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Preface

The material in this Open Press textbook originates from a course that I have taught

at Tilburg University for more than ten years, until my retirement in 2016. The

course was designed to provide students with an introduction to continuous-time

models that are used to analyze derivative contracts in finance and insurance, as

part of the MSc program in Quantitative Finance and Actuarial Science. Students

in the QFAS master’s program come in from the bachelor’s program in Econometrics

and Operations Research at Tilburg University, but also from comparable programs

at universities elsewhere in the Netherlands as well as from abroad. The intended

audience of the course therefore consists of students with a solid background in

standard calculus, linear algebra, and probability, but not necessarily with prior

exposure to stochastic calculus. The main ingredients in the course are:

• an introduction to stochastic calculus at a semi-rigorous level, without using

measure-theoretic probability at the level of filtrations

• a discussion of financial modeling in continuous time, covering basic notions

such as absence of arbitrage and market completeness

• an exposition of computational methods that are used in the field, analytical

as well as numerical, with hands-on experience in the form of programming

exercises

• somewhat more extensive coverage of a particular domain that is important

in finance and insurance, namely the term structure of interest rates.

There is also a “hidden curriculum”: enhancing students’ appreciation of the sub-

tlety and the richness of the interaction between mathematics and the real world.

Since my position at Tilburg University ended, time has not stood still, and the

structure of the courses in the MSc program on Quantitative Finance and Actuarial

Science has not remained the same. The material in the course as I taught it

is still part of the program, but is included now partly in a concentrated course

on stochastic calculus, and partly in a new course which also includes additional

topics. The present text, based on the notes that I have written and expanded over

the years, may still serve as support for students in the QFAS program, as well as
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for students elsewhere who are are looking for an introduction to continuous-time

financial modeling.

In the Open Press edition, the most recent version of course syllabus that I used

has been expanded with material from several sources, including the set of slides

that I developed for the course, as well as exam questions. I also reorganized the

material somewhat and made various smaller changes, some motivated by things

I have learned since retirement. The programming exercises in the original course

were based on Matlab, since this was also used in the curriculum of the BSc program

in Econometrics and Operations Research. I have chosen in the present textbook to

keep the code examples in Matlab, while adding an appendix in which the meaning

of the Matlab commands is explained to facilitate translation to other languages

such as R, Julia, or Scilab.

Most of the material in the book falls in the category “general knowledge”, but

in Appendix A there are references for a few specific items. The following books

contain source material and are excellent further reading for students who want to

go beyond the introductory material that is presented here. Due in particular to

the avoidance of filtrations, some of the theorem statements in this book are lacking

in precision, and some of the proofs are lacking in rigor; for improvements in these

respects as well, I would like to refer the reader to the sources below.

General:

Tomas Björk, Arbitrage Theory in Continuous Time (4th ed.), Oxford Uni-

versity Press, Oxford, UK, 2020.

Ioannis Karatzas and Steven E. Shreve, Methods of Mathematical Finance,

Springer, New York, 1998.

Cornelis W. Oosterlee and Lech A. Grzelak, Mathematical Modeling and Com-

putation in Finance. With Exercises and Python and Matlab Computer Codes,

World Scientific, London, 2020.

Andrea Pascucci, PDE and Martingale Methods in Option Pricing, Springer,

Milan, 2011.

Albert N. Shiryayev, Essentials of Stochastic Finance. Facts, Models, Theory,

World Scientific, Singapore, 1999.

Chapter 1:

Peter L. Bernstein, Capital Ideas, The Free Press, New York, 1992.

Perry Mehrling, Fischer Black and the Revolutionary Idea of Finance, Wiley,

Hoboken, NJ, 2005.

Chapter 2:

Ioannis Karatzas and Steven E. Shreve, Brownian Motion and Stochastic Cal-

culus (2nd ed.), Springer, New York, 1991.
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Fima C. Klebaner, Introduction to Stochastic Calculus with Applications (2nd

ed.), Imperial College Press, London, 2005.

Philip Protter, Stochastic Integration and Differential Equations. A New Ap-

proach, Springer, Berlin, 1990.

Chapter 3:

Freddy Delbaen and Walter Schachermayer, The Mathematics of Arbitrage,

Springer, Berlin, 2006.

Chapter 4:

Yue-Kuen Kwok, Mathematical Models of Financial Derivatives, Springer, Sin-

gapore, 1998.

Chapter 5:

Damiano Brigo and Fabio Mercurio, Interest Rate Models—Theory and Prac-

tice. With Smile, Inflation and Credit (2nd ed.), Springer, Berlin, 2006.

Chapter 6:

Daniel J. Duffy, Finite Difference Methods in Financial Engineering. A Partial

Differential Equation Approach, Wiley, Chichester, UK, 2006.

You-lan Zhu, Xiaonan Wu, and I-Liang Chern, Derivative Securities and Dif-

ference Methods, Springer, New York, 2004.

Chapter 7:

Paul Glasserman, Monte Carlo Methods in Financial Engineering, Springer,

New York, 2004.

The literature is extensive and the above just represents a sample. In particular,

there are many books covering application areas and extensions such as credit risk,

transaction costs, portfolio management, and so on.

Over the years, I have received many comments on my course notes, from the

TA’s who worked with me, as well as from students who followed the course. I may

not recall all exchanges, but let me at least mention Anton van Boxtel, Justinas

Brazys, Renxiang Dai, Sebastian Gryglewicz, Fei Jia, Simon Polbennikov, Krzysztof

Postek, Andreas Würth, Ran Xing, and Evren Yurtseven. I am grateful for their

support. Also, I would like to thank my colleagues Bertrand Melenberg and Nikolaus

Schweizer at Tilburg University who very competently responded to the task of

teaching financial models to new generations of students, and who provided me

with useful suggestions for the editing of the course notes. I am thankful as well to

Daan Rutten for his suggestion to include the course notes in the Open Press series
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of Tilburg University. My gratitude goes moreover to Wikipedia for making it easy

to add some basic biographic notes on historical figures that are mentioned in the

text.

The mathematical theory of derivatives is sometimes referred to as “rational

option pricing”. Indeed the theory could be compared to rational mechanics, the

scientific discipline that speaks of point masses, weightless inextensible cords, and

frictionless pulleys. A certain amount of idealization is involved; a large amount,

perhaps. Models are confined to a certain domain of validity, and even within

this domain they are not fully accurate. Nevertheless, the theory is meaningful,

when applied with an understanding of its limitations. In the sometimes dazzling

and overheated environment of finance, mathematical models provide much needed

guidance. I hope the present text will help the reader to enjoy the cool world that

has been created by the arbitrage theory of financial markets.

Hans Schumacher

Amsterdam, August 2020
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Chapter 1

Introduction

1.1 The origins of the Black-Scholes formula

The Black-Scholes equation appears in a paper by Fischer Black and Myron Scholes

that was published in 1973 in the Journal of Political Economy. Fischer Black has

stated in a later publication that he had arrived at the equation already in 1969,

but at the time was unable to solve it, even though he tried really hard. He writes:

“I stared at the differential equation for many, many months. I made hundreds of

silly mistakes that led me down blind alleys. Nothing worked.”

Fischer Black had come into economics from an unusual angle. He entered Har-

vard University in 1955 as a physics student, but switched to applied mathematics

for his graduate program. The PhD thesis that he completed in 1964 was on artificial

intelligence, showing the design of a question answering machine. He subsequently

joined the consulting firm Arthur D. Little, with the idea of helping businesses to

make better use of their computers. It was there that he became interested in port-

folio management and started reading the works of people such as Jack Treynor,

one of the early proponents of the Capital Asset Pricing Model.

Treynor had published a paper in 1965 in the Harvard Business Review, in which

he argued that there should be an adjustment for risk in assessing the performance

of portfolio managers, since, due to the presence of a risk premium, more risky

portfolios will on average have better returns than less risky portfolios. Fischer

Black liked the “cruel truth”, as he called it, that higher average return only comes

at the expense of higher risk. He tried to apply the idea in several areas that

interested him, such as monetary theory, business cycles, and the pricing of options

and warrants.

Warrants are financial instruments that are similar to options: they give the

right, during a certain period, to buy a given number of units of stock of a certain

company at a stated price. The difference is that warrants are issued by the same

company that also issues the underlying stock, whereas options are traded on an

1
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The origins of the Black-Scholes formula Introduction

exchange; for the purpose of pricing, however, this is inessential. During the 1960’s

warrants were more liquidly traded than options, so that papers discussing the

pricing of such instruments were usually stated in terms of warrants rather than

options. Among those who were interested in finding option pricing formulas was

Paul Samuelson, one of the great minds of the 20th century, who in 1970 became

the first American to receive the Nobel Prize in Economics.

Samuelson had done a bit of trading in warrants on a private account already

since 1950, without making a lot of money though. Around 1952 he became aware

of the work of the French trader and mathematician Louis Bachelier, who had con-

nected the theory of Brownian motion with financial markets in his thesis presented

at the Sorbonne in Paris in the year 1900. Even earlier, in 1880, the Danish actuary

Thorvald Thiele published a paper on the least-squares method in which the stochas-

tic process appears that we now call the “Wiener process” or “Brownian motion”.

Bachelier however was not aware of this work and developed the theory completely

by himself, including the connection to partial differential equations which was to

be rediscovered, again independently, in 1905 by none other than Albert Einstein.

Options were traded at the Bourse at the time, and Bachelier derived an option

pricing formula.

It was not only the option pricing formula that drew Samuelson’s attention, but

also the mathematical setting that Bachelier had used. Samuelson noted that the

Brownian motion process as used by Bachelier (also known as arithmetic Brownian

motion) would not be suitable as a model for stock prices, since it may well take

negative values. Famously commenting that “a stock might double or halve at

commensurable odds”, Samuelson proposed a model in which the logarithm of the

stock price follows a Brownian motion process, rather than the price itself. Thus

appeared the geometric Brownian as a model for stock prices. Nowadays this model

is usually referred to as the Black-Scholes model, since it serves as the basis for

the Black-Scholes equation and the Black-Scholes formula for option prices, but it

would actually be more appropriate to refer to it as the Bachelier-Samuelson model,

since it arose as Samuelson’s modification of Bachelier’s original proposal for the

modeling of stock prices. We can then still abbreviate it as the BS model.

The theory of Brownian motion was made mathematically rigorous in the 1930’s

by Norbert Wiener, and during the 1940’s and 1950’s the theory was expanded

to a great extent by Kiyoshi Itô, who developed a stochastic calculus that could

be used for instance to formulate stochastic differential equations. Samuelson, not

feeling quite confident in the use of the new calculus himself, wrote a paper on

the pricing of warrants in 1965 in collaboration with Henry McKean, his colleague

from the MIT mathematics department who in the same year published a book on

diffusion processes jointly with Itô. Despite the strong mathematical foundation, the

pricing formula that Samuelson obtained in this paper was still not satisfactory, since
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it contained some undetermined parameters. In the 1960’s, several other pricing

formulas were proposed, which however all suffered from the same problem.

Samuelson was well aware of the deficiencies of his formula. Looking for someone

who could support him in the further mathematical developments that would be

needed, he was happy to notice among the participants in his graduate course in

1967 a student who had just come in from California Institute of Technology as a

result of a switch from applied mathematics to economics. In the spring, Samuelson

hired the student, whose name was Robert C. Merton, as his research assistant, and

in the summer he proposed that they would write a joint paper on the pricing of

options. The paper appeared in 1969; it eliminated the undetermined parameters of

Samuelson’s earlier paper, but only at the expense of invoking an explicit description

of the preferences of agents by means of utility functions. In October 1968, when

Samuelson was announced to deliver the main lecture at the inaugural session of the

MIT-Harvard Joint Seminar in Mathematical Economics, he surprised the assembled

luminaries by instead giving the floor to his 24-year-old PhD student, in order to

present their joint paper on option pricing. Merton later recalled that this experience

at once cured him from any trepidation for audiences.

Myron Scholes arrived in the Boston area in the fall of 1968 as a starting assistant

professor at MIT’s Sloan School of Management, having just completed the PhD at

the University of Chicago under the direction of Merton Miller. One of the people

he made contact with in his new environment was Fischer Black, who was a regular

visitor at Franco Modigliani’s Tuesday night finance seminars at MIT, and whose

office at Arthur D. Little was located close to the MIT campus. When Wells Fargo,

one of the most innovative banks at the time, offered Scholes a consulting position,

he suggested that they would hire Fischer Black as well. As a result Black and

Scholes came to meet regularly, be it no longer at Arthur D. Little but rather at

Black’s own consulting practice which he had started after quitting from his job at

ADL.

The two men talked about many things, but not about options at first. Then,

some time in 1969, Black showed the equation he had derived to Scholes, and dis-

cussed with him the remarkable fact that the expected return on the underlying

stock plays no role in it. From this observation, they concluded that candidate solu-

tions to the equation might be found from simplified versions of the option pricing

formulas that were already around in the literature. And indeed, working from a

formula that was developed by a Yale University graduate student, they arrived at

the solution. They had found an option pricing formula that, unlike its competitors,

was stated directly in terms of observable quantities.

Fischer Black had arrived at his option pricing equation through an application

of CAPM. When Bob Merton came to know about the equation, following a presen-

tation by Scholes at the second Wells Fargo Conference on Capital Market Theory
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in July 1970, he was skeptical. He couldn’t believe that a static theory like CAPM

could be reasonably combined with a theory of continuous or near-continuous trad-

ing. Thinking about it some more, he found a different argument leading to the

same equation. On a Saturday afternoon in August, he made a phonecall to Scholes

and said: “You’re right.”

As they say: the rest is history. Black and Scholes wrote their paper on the

option pricing formula and submitted it to the Journal of Political Economy where

it was promptly rejected, without even being sent out for review. Subsequently they

sent their paper to the Review of Economics and Statistics, only to have it returned

in the same way. At that point, Scholes’ former PhD advisor Merton Miller and

his colleague Eugene Fama stepped in; they convinced the editors of JPE that the

paper might be worthwile after all. The paper was accepted subject to revision in

August 1971, and it finally appeared in 1973, as it happened one month after the

Chicago Board Options Exchange had opened for business. Soon, the Wall Street

Journal would carry advertisements for calculators with the Black-Scholes formula

built in.

The main argument presented for the Black-Scholes equation in the 1973 pa-

per is the one that was provided by Merton. Black’s original argument is given

as an “alternative derivation”. Merton provides yet another derivation in a paper

published in 1977, which is only for the better, since the argument as used in the

1973 paper would be considered rather dubious by current standards. Major steps

towards the completion of the theory were taken by Michael Harrison together with

David Kreps in 1979 and together with Stanley Pliska in another paper published in

1981. In these papers one finds the notions of “self-financing strategy” and “equiv-

alent martingale measure” that are lacking from the original option pricing papers,

and that are essential for a full development of the theory even though Harrison

and Kreps themselves refer to the EMM as a “somewhat abstruse concept”. Other

researchers have expanded the theory further, both strengthening its foundations

and extending widely its domain of applications.

Fischer Black died of cancer in 1995. Myron Scholes and Robert Merton received

the Nobel Prize in Economics in 1997. These three men have been pivotal in the

development of a theory that has fundamentally transformed the world of finance.

1.2 Assets and self-financing strategies

1.2.1 Basic assumptions and notation

Money that is not needed for immediate consumption must be stored for later use.

It may be kept in the form of cash, or in a savings account at a bank; it may be

invested in government bonds, corporate bonds, stocks, gold, rare stamps, or in one
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of the countless other investment opportunities that the world has to offer. Any item

that can be used to store value will be referred to as an asset. Some assets are safe

in the sense that their future value can be predicted quite accurately; other assets

are risky and may bring large gains or severe losses. While the word “value” is often

used in daily life for other things besides financial value, this book concentrates on

the role of assets in finance. The value of an asset is therefore taken to be the price

for which it can be bought or sold, and the terms “value” and “price” will be used

interchangeably.

To facilitate the development of the theory, it is convenient to use the following

assumptions.

(i) Assets are measured in units; the price of an asset refers to the price per unit.

The price of c units is equal to c times the price of one unit. Prices are defined

unambiguously at any point in time.

(ii) The value of a combination of assets (a portfolio) is the sum of the values of

its constituent parts.

(iii) Assets can be traded freely, without transaction costs, at any time and in any

quantity. The buying price is the same as the selling price.

(iv) From the point of view of an individual investor, the evolution of asset prices

is an exogenous process which cannot be manipulated. In particular, the price

process is not impacted by the investor’s trades.

(v) Holding a fixed quantity of an asset brings no costs or dividends, other than

gains or losses through value changes which are realized at the time at which

the asset is sold.

The first four items are idealizing assumptions, which are quite helpful in the con-

struction of mathematical models for the analysis of financial contracts. Of course it

needs to be recognized that in reality trading takes place in a market environment

which operates according to certain rules, that usually there is a bid-ask spread,

that large trades in a given asset will impact its price, and so on. Researchers have

constructed a variety of models that take these features into account; however, these

models fall outside the scope of this book. Assumption (v) is of a different nature;

one can make sure that this assumption is satisfied by incorporating any costs or

dividends into the definition of the asset (see Section 4.3.4).

According to assumptions (i) and (ii) above, the value of a portfolio at any given

time t is given by the formula

Vt =

m∑
i=1

φitY
i
t (1.1)
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where i = 1, . . . ,m is an index used to distinguish different assets, Vt is the portfolio

value at time t, Y i
t is the price per unit of asset i at time t, and φit is the number of

units of asset i that are present in the portfolio at time t. All prices are supposed

to be expressed in a given unit of currency such as dollars or euros; portfolio value

is then expressed in the same unit of currency. The numbers Y i
t together form a

vector of length m which will be written as Yt. Likewise, we introduce an m-vector

φt whose entries φit specify portfolio composition at time t. Both Yt and φt are

defined as column vectors. The expression (1.1) for portfolio value can then be

rewritten as

Vt = φ>t Yt (1.2)

where the superscript > denotes transposition. Vector notation will be used fre-

quently throughout this book.

Under the idealizing assumptions above, investors have no control of the evolu-

tion of prices, but they can adjust their holdings (the numbers φit in the expression

above) at any time. The evolution of the value of the portfolio depends both on

the way that prices change in time and on the way in which the portfolio compo-

sition is modified in the course of time. The joint effect can be described in terms

of formulas which will be reviewed in this section for the case in which portfolio

composition is only changed at discrete points in time. Later on in this chapter, it

will be argued that, for theoretical purposes, it is convenient to assume that port-

folio composition can be changed continuously, even if in practice truly continuous

trading is not possible. To describe the evolution of portfolio value that results from

both continuously changing prices and continuously changing portfolio composition,

some mathematical developments are needed. These are reviewed in Chapter 2.

In the continuous-time framework as used in this book, it will be assumed that

prices do not experience instantaneous jumps, so that there is no ambiguity as to

whether Yt refers to a price before or after a jump has taken place at time t. With

respect to portfolio composition, the situation is different. Instantaneous changes

of portfolio composition will be allowed; these correspond to selling and/or buying

a package of assets at a single point in time. In such cases, we need to be precise

as to whether φt refers to portfolio composition before or after the trade at time

t has been effectuated. By convention, the symbol φt is used to refer to portfolio

composition after the trade, and φt− denotes portfolio composition before the trade;

in other terms,

φt− := lim
τ↑t

φτ

where the notation “τ ↑ t” indicates that the limit is taken from below.
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1.2.2 Self-financing portfolios

Let us consider a fixed time interval during which a portfolio is held, possibly with

changes in composition. It will be assumed that during this period no money is

withdrawn from the portfolio (for instance for consumption), and neither are any

funds added from outside, for instance from labor income or from other forms of

income. As a consequence, all trading must take place under the budget constraint

which states that, in every change of portfolio composition, the value of the assets

sold must be equal to the value of the assets bought. Trading strategies that satisfy

this condition are said to be self-financing. One also speaks of a “self-financing

portfolio”.

The restriction to self-financing strategies simplifies the presentation, but this

is not the only reason to be especially interested in such strategies. Below we will

often be concerned with the problem of determining the value of a contingent claim,

i.e. a contract that will pay, at a time in the future, an amount that is determined

by information that will be known at the time of payoff but that is not known now.

Suppose it is possible to create a trading strategy that, starting from a given initial

portfolio value V0, causes the portfolio value at the time of payoff to be equal to

the value of the contingent claim under all possible circumstances. The strategy is

then said to replicate the claim. If the replicating strategy is self-financing, then the

initial portfolio value V0 can be viewed, and one might even say: must be viewed,

as the “fair price” of the contract.

For convenience, the initial point of the time interval under consideration will

be called t = 0, and the final point will be written as t = T . The value V0 of

the portfolio at time 0 may be considered given. We are interested in particular in

getting expressions for the final portfolio value VT as a function of decisions that

are taken on the portfolio composition during the interval from 0 to T . If t is a time

at which a change of portfolio composition takes place (a rebalancing date), then

the asset holdings at that time are changed from old values to new values, so that

φit 6= φit− for some or all of the asset indices i = 1, . . . ,m. The budget constraint,

i.e. the condition that the total value of assets bought is equal to the total value of

assets sold, is expressed in mathematical terms by

m∑
i=1

φit−Y
i
t =

m∑
i=1

φitY
i
t (1.3)

for each rebalancing date t. More specifically, let the rebalancing times be indicated

by t1, . . . , tn, with 0 < t1 < · · · < tn < T . Since by assumption there is no change

in the portfolio composition between time tj and time tj+1, the equality φi
t−j+1

= φitj
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holds and therefore the condition (1.3) may also be written as

m∑
i=1

φitj+1
Y i
tj+1

=
m∑
i=1

φitjY
i
tj+1

. (1.4)

By subtracting
∑m

i=1 φ
i
tjY

i
tj from both sides and using (1.1), we can alternatively

write the condition as

Vtj+1 − Vtj =

m∑
i=1

φitj (Y
i
tj+1
− Y i

tj ) (1.5)

which is the same as

Vtj+1 = Vtj +

m∑
i=1

φitj (Y
i
tj+1
− Y i

tj ). (1.6)

In words, this says that the portfolio value at time tj+1 is equal to the value at

time tj plus the gains or losses that have been realized on the assets that constitute

the portfolio. These gains or losses are computed as the changes in value of these

assets, multiplied by the numbers of units of the assets that were selected in the

rebalancing that took place at time tj . This property is an alternative statement of

what it means for a portfolio to be self-financing. Indeed, the rule (1.6) has been

derived from the budget constraint (1.3), but vice versa it can be verified that (1.3)

can be derived from (1.6) given that portfolio value is defined by (1.1), so that the

two statements are in fact equivalent.

The notation can be simplified somewhat by switching to vector notation. Using

the m-vector φt of asset holdings at time t and the m-vector Yt of asset values at

time t, we can write, instead of (1.5),

Vtj+1 − Vtj = φ>tj (Ytj+1 − Ytj ). (1.7)

A further simplification can be made by introducing the forward difference operator

∆ and writing the condition for a portfolio to be self-financing as

∆Vtj = φ>tj∆Ytj (1.8)

where ∆Vtj stands for Vtj+1 − Vtj , and ∆Ytj for Ytj+1 − Ytj . To streamline the

notation even more, let us set t0 = 0 and tn+1 = T . We can then write

VT − V0 =

n∑
j=0

∆Vtj
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where use is made of the telescope rule.1 This leads to the following expression for

the portfolio value at time T :

VT = V0 +
n∑
j=0

φ>tj∆Ytj . (1.9)

The expression holds for self-financing portfolio strategies. In other words, if a

strategy {φt}t is defined that satisfies the budget constraint (1.3), then the portfolio

value at time T can be computed on the basis of the formula above. Conversely, if

the relation between portfolio value (as defined by (1.2)) at any two times τ1 and τ2

is given by (1.9) with 0 replaced by τ1 and T by τ2, taking the sum over all j such

that tj lies between τ1 and τ2, then the strategy {φt}t is self-financing.

A portfolio that is rebalanced according to a well-defined self-financing strategy

may itself be considered as an asset. Take for instance a simple financial product

such as the zero-coupon bond which pays, for each invested euro, a given amount at a

given future time.2 A bank might construct a new product by the following strategy.

Suppose that an initial capital is available. Use this capital at the initial time to

buy five-year zero-coupon bonds. After one year, sell these bonds (which by then

have become four-year bonds), and use the proceeds to buy five-year bonds. Do the

same after two years, and so on. This strategy is self-financing, and it defines a new

financial product which might be called a “perpetual five-year bond”, or which might

be sold under a more fancy name invented by the bank’s marketing department.

This product will have characteristics of its own (in particular it is sensitive to

the variations of the five-year interest rate) which may make it attractive for some

investors. The new product can be thought of as an asset by itself; it could be part

of some portfolios which again may be subject to well-defined trading strategies,

and so on. In this way, self-financing trading strategies can be thought of as devices

which transform assets into new assets.

1.2.3 Use of a numéraire

Instead of using a unit of currency, such as euros or dollars, as a unit of account, we

can also express prices in terms of a particular asset that has been chosen for this

purpose. For instance, to make prices of assets at different times more comparable,

one can express prices in terms of a number of units of a prescribed basket of

commodities. When an asset is employed as a unit of account, we say that it is used

1The telescope rule states that the sum of the successive differences of a sequence of real numbers
is equal to the last element of the sequence minus the first one. Formulawise, the rule can be written
as

∑n−1
i=1 (ai+1 − ai) = an − a1.

2This product is sold to consumers under the name “deposit”, and the amount to be received at
the given future time is typically expressed in terms of an interest rate.
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as a numéraire.3 Since the number of units of one asset that can be traded against

a given number of units of another asset is determined by the relative prices of the

assets, no essential economic information is lost when prices are expressed relative

to a numéraire rather than in terms of money. From a theoretical perspective, it

may actually be preferable to avoid the indeterminacy that comes from choosing a

particular currency.

Any asset can be used as a numéraire, as long as one can be sure that the value

of the asset is never zero, since relative prices cannot be defined with respect to an

asset that has zero value. Financial models typically contain many assets that always

represent some value, in other words, whose price is always positive. Therefore one

usually has a wide choice of possible numéraires; this may be used to advantage in

the context of a particular pricing problem, much in the same way as one might

choose a convenient coordinate system in a geometry problem. Numéraires will be

used frequently in this book.

Some of the advantages of using a numéraire can already be seen when we discuss

the evolution of portfolio value under the combined influence of changing asset prices

and a self-financing trading strategy. Suppose that there are m assets to be traded

which are numbered from 1 to m, and that asset m can be taken as a numéraire.

To highlight the special role of this asset, we shall write its value at time t, rather

than Y m
t . Let the initial value of a portfolio be given. To specify a self-financing

strategy, it is enough to specify the holdings of the first m − 1 assets at the initial

time and at the rebalancing times, because the number of units to be held of the

numéraire asset is determined by the budget constraint.4 Relative to the value of

the numéraire at time tj , the portfolio value at time tj is given by

Vtj
Ntj

=

m−1∑
i=1

φitj
Y i
tj

Ntj

+ φmtj =

m−1∑
i=1

φitj−1

Y i
tj

Ntj

+ φmtj−1
(1.10)

where the latter equality follows from the budget constraint (1.4). A similar ex-

pression can of course be written down at time tj−1. Subtraction then leads to the

following formula for the change of relative portfolio value between two successive

rebalancing dates:

Vtj
Ntj

−
Vtj−1

Ntj−1

=
m−1∑
i=1

φitj−1

(
Y i
tj

Ntj

−
Y i
tj−1

Ntj−1

)
. (1.11)

3The word numéraire is used in French to refer to coins and banknotes. The idea of using a
traded asset as a unit of account, rather than some arbitrary currency, can be traced back to the
works of the French engineer Achylle-Nicholas Isnard (1749–1803). Writing about economics in his
spare time, Isnard was one of the earliest contributors to mathematical economics. The idea of
expressing prices in terms of a numéraire is also used extensively in the work of the French-Swiss
economist Léon Walras (1834–1910), who is known as the father of general equilibrium theory.

4Note that it is essential here that the value of the numéraire is never zero.
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Using the forward difference operator again as well as the telescope rule, we can

write
VT
NT

=
V0

N0
+

n∑
j=0

m−1∑
i=1

φitj−1
∆
Y i
tj

Ntj

. (1.12)

All asset values at any time are now expressed relative to the value of the numéraire

at the same time.

From the point of view of designing a trading strategy, it is of interest to note

that both in (1.9) and in (1.12) the quantities φ1
tj , . . . , φ

m−1
tj

can be chosen freely.

Comparing the two expressions (1.9) and (1.12) to each other, one notes that to

compute the final portfolio value VT by means of (1.9), the corresponding values of

φmtj (holdings of the numéraire asset) must be computed at each rebalancing time

tj , which in turns requires calculating the portfolio value at each of these times.

In contrast, the formula (1.12) gives the final portfolio value directly in terms of

the free variables φitj (i = 1, . . . ,m − 1, j = 0, . . . , n); however, the value is given

in terms of the numéraire rather than directly in monetary terms. While the final

result of a financial calculation is usually required in terms of a unit of money, it is

often convenient to use a suitably chosen numéraire in intermediate steps. Examples

of this will be seen at various occasions in later chapters.

As usual it is convenient to use vector notation. In vector form, the expression

(1.12) becomes5

VT
NT

=
V0

N0
+

n∑
j=0

φ>tj∆
Ytj
Ntj

. (1.13)

This formula gives an expression for the final portfolio value VT that results from

the asset price process Yt0 , Yt1 , . . . and from the self-financing strategy whose first

m−1 components are given by φ1
tj , . . . , φ

m−1
tj

(j = 0, . . . , n). The last component φmtj
is determined by the budget constraint which states that the value of the portfolio

before and after rebalancing at time tj must be the same.

1.3 Transition to continuous time

Now, let us consider what happens if the number n of trading times is large. In

modern markets, positions in liquid assets can be revised and changed again in

fractions of seconds, so that the number of rebalancings can indeed be very large.

From a mathematical perspective it is then very attractive to allow ourselves to call

5In principle there is an ambiguity in (1.13) since the inner product that appears
in the formula could be read as an inner product of the vectors (φ1

tj , . . . , φ
m−1
tj

) and

(∆(Y 1
tj/Ntj ), . . . ,∆(Y m−1

tj
/Ntj )) or as an inner product of the vectors (φ1

tj , . . . , φ
m
tj ) and

(∆(Y 1
tj/Ntj ), . . . ,∆(Y mtj /Ntj )). However the two inner products are the same, because Ntj = Y mtj

for all j so that ∆(Y mtj /Ntj ) = 1− 1 = 0.
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upon the power of differential and integral calculus and to think of asset holdings

φjt as general functions of continuous time, rather than to maintain the restriction

that these functions must be piecewise constant. To make this approach successful,

we should then be able to replace the expressions (1.9) and (1.13) by corresponding

integral expressions

VT = V0 +

∫ T

0
φ>t dYt (1.14)

and, in terms of a numéraire,

VT
NT

=
V0

N0
+

∫ T

0
φ>t d

Yt
Nt

. (1.15)

These are still tentative formulations, since there are issues to be addressed even in

the definition of the integrals that appear in (1.14) and (1.15).

1.3.1 Riemann-Stieltjes integrals

Integrals of the form
∫ b
a f(x) dg(x), in which both the integrand f(x) and the inte-

grator g(x) can be taken from some large class of functions, were already investigated

in the 19th century. A typical approach is to look at sums of the form

S(f, g,Π, ξ) :=

n∑
j=0

f(ξj)
(
g(xj+1)− g(xj)

)
where Π = (x0, x1, . . . , xn+1) is a partition of [a, b],6 and where ξ = (ξ0, ξ1, . . . , ξn)

is a corresponding sequence of intermediate points, i.e. xj ≤ ξj ≤ xj+1 for all

j = 0, . . . , n. The mesh of a partition Π = (x0, x1, . . . , xn) is defined by

|Π| = max
j=0,...,n

(xj+1 − xj).

In order to achieve the transition to continuous time, one may think of applying the

following theorem from Riemann-Stieltjes7 integration theory. The theorem8 refers

to a particular property that is defined as follows: a function g(x) defined on an

interval [a, b] is said to be of bounded variation if there exists a number M such that∑n
j=0 |g(xj+1) − g(xj)| ≤ M for all partitions a = x0 < x1 < · · · < xn < xn+1 = b.

6A sequence of points (x0, x1, . . . , xn+1) is called a partition of the interval [a, b] if a = x0 <
x1 < · · · < xn < xn+1 = b.

7Bernhard Riemann (1826-1866), German mathematician. Thomas Jan Stieltjes (1856-1894),
Dutch mathematician.

8Integration theory can be built up in several ways, and therefore the theorem as stated here
should be viewed as just a representative of various results in the same spirit, namely: the integral
can be defined, i.e. the same limit is obtained irrespective of the sequence of refining partitions that
is chosen, if the integrator and the integrand are sufficiently well-behaved.
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The infimum of all numbers M that have this property is called the total variation of

the function g(x) on the interval [a, b]. Intuitively, a function of bounded variation

has “finite length”. It can be proved that a function is of bounded variation if and

only if it can be written as the difference of two nondecreasing functions. A function

of bounded variation need not be continuous; for instance, take g(x) defined on [0, 1]

by g(x) = 0 for 0 ≤ x < 1
2 and g(x) = 1 for 1

2 ≤ x ≤ 1. Conversely, there exist

continuous functions that are not of bounded variation. For instance, consider the

function g(x) defined on [0, 1] by g(x) = x sin(1/x) for 0 < x ≤ 1, and g(0) = 0.

Theorem 1.3.1 Suppose that f(x) is a continuous function defined on the interval

[a, b] and that g(x) is a function of bounded variation defined on the same interval.

In that case there exists a number, written as
∫ b
a f(x) dg(x), which has the property

that for every ε > 0 there exists δ > 0 such that

∣∣∣ ∫ b

a
f(x) dg(x)−

n∑
j=0

f(ξj)∆g(xj)
∣∣∣ < ε

for all sequences of points a = x0 < x1 · · ·xn < xn+1 = b that satisfy xj+1 − xj < δ

for all j = 0, . . . , n, and for all sequences of points ξ0, . . . , ξn that satisfy xj ≤ ξj ≤
xj+1 for all j = 0, . . . , n.

The number
∫ b
a f(x) dg(x) is called the Riemann-Stieltjes integral of f with respect

to g. The theorem states that this number is defined by the functions f and g and

by the integration interval [a, b]; in particular any choice of intermediate points will

give rise to approximately the same value of the sum
∑n

j=0 f(ξj)∆g(xj), and as the

intermediate points become more dense the approximation becomes more close. In

this way there is no ambiguity about the value of the integral. One can show by

examples that these properties need no longer hold if f is not continuous or g is not

of bounded variation.

It may seem reasonable to assume that the trajectories of asset prices are of

bounded variation. Certainly it is true that the total variation of actual stock prices

in a given interval of time (i.e. the sum of the absolute values of the price changes

that take place during that interval) is always finite, for the simple reason that the

number of instants at which the price changes may be large, but must certainly be

finite. This does not necessarily mean, however, that the assumption of bounded

variation works well in an idealized model in which trading takes place continuously.

In fact, some doubt on the applicability of Riemann-Stieltjes integration is raised

by the experiment described below.
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Transition to continuous time Introduction

1.3.2 A trading experiment

One of the calculus rules of Riemann-Stieltjes integration states that, if g is contin-

uous as well as of bounded variation and F is a continuously differentiable function,

then ∫ b

a
F ′(g(x)) dg(x) = F (g(b))− F (g(a)). (1.16)

This is a generalized form of the fundamental theorem of calculus (the standard form

is obtained in the case that g is the identity function, i.e. g(x) = x). In particular,

by taking F (x) = 1
2x

2, we find∫ b

a
g(x) dg(x) = 1

2g(b)2 − 1
2g(a)2. (1.17)

This rule might be used for the construction of trading strategies in a financial

market. To simplify, suppose that there are only two assets to invest in, so that

m = 2 in the derivations above. Write St (“stock”) instead of Y 1
t and Bt (“bond”)

instead of Y 2
t , and take the bond as a numéraire. The formula (1.13) then becomes

VT
BT

=
V0

B0
+

n∑
j=0

φtj ∆
Stj
Btj

. (1.18)

Suppose now that we choose, at each time tj (j = 1, . . . , n),

φtj =
Stj
Btj
− S0

B0
. (1.19)

This can indeed be done in practice; no “crystal ball” is required, since Stj and

Btj are known quantities at time tj . If the time intervals between rebalancings are

sufficiently small, then, by the theorem above, the sum at the right hand side of

(1.18) is close to the integral ∫ T

0

(
St
Bt
− S0

B0

)
d
St
Bt

.

In this integral we can also write d(St/Bt−S0/B0) instead of d(St/Bt), and therefore

by virtue of (1.17) the value of the integral is equal to

1

2

(
ST
BT
− S0

B0

)2

.

One remarkable observation here is that the increment of the relative portfolio value

(i.e. relative to the numéraire) across the interval [0, T ] depends only on the incre-

ment of the relative value of the asset S. Moreover the dependence is quadratic. In

particular the value of the integral is always nonnegative, and it is positive whenever

14
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Figure 1.1: Test of money making scheme: St = 100 + 10 sin(2πt) + 10t; Bt = 1.

ST /BT is not equal to S0/B0. In particular we can use the strategy with zero initial

capital (V0 = 0), and obtain from (1.18)

VT
BT
≈ 1

2

(
ST
BT
− S0

B0

)2

where the approximation should be better and better as we increase the frequency

of portfolio rebalancings. If we assume that the assets St and Bt are really different

assets in the sense that their values do not move in tandem, then it seems that the

strategy (1.19) in general leads to a positive final portfolio value, while negative final

portfolio values do not occur; moreover, no initial investment is required to achieve

this.

Let us test this promising scheme. Figures 1.1 and 1.2 show cases in which

the asset price is a smooth function. The results of the strategy lives up perfectly

to the expectations; in the second case, where the asset price is quite oscillatory,

convergence is only achieved when the partitioning is made rather fine, but it is

achieved. These asset price trajectories are not terribly realistic, however. To get

an asset price trajectory that is more like what we are used to seeing when looking

at plots of stock prices, asset prices (on a fine grid) may be generated by a scheme

of the following type:

Stj+1 = Stj + µStj∆t+ σStj
√

∆t Zj (1.20)

where the Zj ’s are independent standard normal variables, µ and σ are constants,

and ∆t is a very small time step (not larger than the length of the smallest interval

between rebalancing times). Examples of the results are shown in Figures 1.3 and

1.4.

A rather different behavior is seen here. The final values of the portfolio strategy

applied with increasingly higher frequencies to a given asset price trajectory do seem

to converge, but not to the value predicted by the theory. As is seen from the

graphs, negative results may well occur. Our scheme doesn’t seem to work. Perhaps

the prospect was too good to be true, but what is the mathematical explanation?
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Figure 1.2: Test of money making scheme: St = 100 + 10 sin(20πt) + 10t; Bt = 1.
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Figure 1.3: Test of money making scheme: St randomly generated as in (1.20) with
µ = 0.08 and σ = 0.2; Bt = 1.

After all, Theorem 1.3.1 above is a valid statement. The problem must be that the

assumptions of the theorem are not satisfied — the trajectories of asset prices are

not adequately described in continuous time as functions of bounded variation.

1.3.3 A new calculus

One response to the failed money making experiment might be to give up on the idea

of replacing sums by integrals altogether. However, since in practice we can trade

almost continuously and because calculus is such a convenient tool, it is preferable to

develop a generalized calculus that can deal with trajectories that are not of bounded

variation. Riemann-Stieltjes integration was developed in the 19th century; in the

20th century, mathematical tools have been constructed which enable us to deal
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Figure 1.4: Test of money making scheme: St randomly generated as in (1.20) with
µ = 0.08 and σ = 0.2; Bt = 1.
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Introduction Exercises

with the irregularity of asset price trajectories. In the new calculus (known as Itô

calculus)9 we can still use rules of integration, and for instance devise strategies

that make the portfolio value at time T depend in a particular way on the value of

a particular asset at the same time. The calculus produces additional terms which

do not appear in (1.17), and which preclude the development of money-making

schemes such as the one discussed above. Stated in other words, these additional

terms explain why such schemes do not work under the assumptions of the Itô

calculus.

Nowadays, it is generally accepted that the additional terms produced by Itô’s

calculus have to be taken into account in the analysis of trading strategies in financial

markets. Moreover, models based on Itô calculus are taken as guidelines to develop

trading strategies that may not act as money machines but that still satisfy useful

purposes, such as providing protection against liabilities that may arise (“hedging”),

or, in investment management, optimizing the balance between risk and return

according to a given criterion. The following chapters describe the new calculus and

a number of applications in financial markets.

1.4 Exercises

The exercises in this chapter are somewhat atypical, in the sense that they require

more extensive knowledge of real analysis than will be needed in exercises in other

chapters.

1. Define a function g on [0, 1] by g(0) = 0 and g(x) = x sin(1/x) for 0 < x ≤ 1.

Prove that (as claimed on p. 13) this function is continuous, but not of bounded

variation on [0, 1].

2. a. Show that any continuous function on a closed and bounded interval is in

fact uniformly continuous.10

b. Using part a., show that

lim
|Π|→0

n∑
j=0

(
g(xj+1)− g(xj)

)2
= 0

for any continuous function of bounded variation g defined on a closed and bounded

interval [a, b], where Π is the partition with partition points a = x0 < x1 < · · · <

9Kiyoshi Itô (1915–2008), Japanese mathematician. Itô developed his calculus in the mid-1940s
while working for the national statistical office of Japan.

10A real-valued function defined on a subset A of the real line is said to be uniformly continuous
if for every ε > 0 there exists δ > 0 such that |f(x) − f(y)| < ε for all x and y in A such that
|x − y| < δ. The difference with ordinary continuity is that, for uniform continuity, it is required
that the same δ can be used throughout the domain of definition.
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xn+1 = b. In other (and more precise) words, show that for every ε > 0 there exists

δ > 0 such that
n∑
j=0

(
g(xj+1)− g(xj)

)2
< ε

for every partition Π = (x0, x1, . . . , xn+1) of [a, b] that satisfies |Π| < δ.
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Chapter 2

Stochastic calculus

2.1 Brownian motion

2.1.1 Definition

Just as the normal distribution is in several senses the “nicest” of all continuous

distributions that random variables can have, Brownian motion1 (also known as

the Wiener process)2 is the continuous stochastic process that is most attractive

in many ways. Most of the financial models that are used in practice are based

on this process. The Wiener process3 may be seen as the continuous version of the

discrete-time standard random walk, which is the time series generated by the model

X0 = 0, Xk+1 = Xk + Zk, Zk
i.i.d.∼ N(0, 1). (2.1)

The definition of the Wiener process can be stated as follows.

Definition 2.1.1 A continuous-time process {Wt} (t ≥ 0) is said to be a Wiener

process or a Brownian motion if it satisfies the following properties.

(i) W0 = 0.

(ii) If t1 < t2 ≤ t3 < t4, then the increments Wt2 − Wt1 and Wt4 − Wt3 are

independent.

(iii) For any given t1 and t2 with t2 > t1, the distribution of the incrementWt2−Wt1

is the normal distribution with mean 0 and variance t2 − t1.

The Wiener process has proven to be extremely useful in the modeling of financial

markets. It is typically not used in pure form but rather processed by a stochastic

differential equation, in a way that will be discussed below.

1Robert Brown (1773–1858), British biologist.

2Norbert Wiener (1894–1964), American mathematician.

3The terms “Wiener process” and “Brownian motion” are used interchangeably in this book.
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Property (i) in the definition above is just a normalization. Property (ii) is called

the independent increments property. Properties (ii) and (iii) together imply that

the conditional distribution of Wt2 given Wt for 0 ≤ t ≤ t1, where t1 < t2, is the

normal distribution with expectation Wt1 and variance t2 − t1. In particular, the

conditional distribution of Wt2 given information up to time t1 < t2 depends only

on Wt1 and not on any earlier values of Wt.

The definition as given above is a bit unusual in that it just lists a set of prop-

erties. In fact it is not at all trivial to show that it is indeed possible to define a

collection of stochastic variables {Wt}t∈[0,∞) in such a way that all conditions of the

definition above are satisfied. Such a construction was carried out by Wiener, which

is why the process bears his name. One of the key facts that make the construction

possible is the following: if X1 and X2 are independent normal random variables

with expectation 0 and with variance σ2
1 and σ2

2 respectively, then X1 + X2 is a

normal random variable with expectation 0 and with variance σ2
1 +σ2

2. If this would

not hold, then properties (ii) and (iii) in the definition of the Wiener process would

not be compatible.

Some remarks on terminology need to be made. The process defined above is

called by some authors a standard Wiener process. The term “Wiener process”

without further qualification is then used for any process that satisfies conditions

(i), (ii), and

(iii)′ There exists a constant σ > 0 such that, for any given t1 and t2 with t2 > t1,

the distribution of the increment Wt2 −Wt1 is the normal distribution with

mean 0 and variance σ2(t2 − t1).

More specifically, such a process is called a Wiener process with variance parameter

σ2. If Wt is a Wiener process with variance parameter σ2, then σ−1Wt is a standard

Wiener process. In this book, the standard Wiener process is used so often that it is

more convenient to refer to it simply as a “Wiener process” or “Brownian motion”

without the specification “standard”. So if mention is made below of a “Wiener

process” or a “Brownian motion” without further qualification, then the standard

Wiener process is meant.

2.1.2 Vector Brownian motions

It is often useful in financial market modeling to consider several Brownian motions

at the same time. A vector Brownian motion with variance-covariance matrix Σ is a

vector-valued stochastic process that satisfies the same properties as the Brownian

motion defined above, except that the increments Wt2 − Wt1 follow multivariate

normal distributions with mean 0 and variance-covariance matrix (t2 − t1)Σ. The

variance-covariance matrix describes correlation between increments of the compo-

nents of a vector Brownian motion across the same interval of time; increments
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corresponding to non-overlapping time intervals are independent, as in the case

of the scalar Brownian motion. A standard vector Brownian motion is a vector

Brownian motion whose variance-covariance matrix is the identity matrix. In other

words, a k-vector standard Brownian motion is constructed from k independent

scalar Brownian motions, taken together into a vector. Whenever several Brownian

motions are discussed below, it will always be assumed that they together form a

vector Brownian motion.4

A well known property of the normal distribution is that any linear combination

of jointly normally distributed variables is again normally distributed. Likewise,

one can show that any linear combination of (not necessarily standard) Brownian

motions, which together form a vector Brownian motion, is again a (not necessarily

standard) Brownian motion. For instance, if W1,t and W2,t are independent Brown-

ian motions with variance parameters σ2
1 and σ2

2 respectively, then aW1,t + bW2,t is

a Brownian motion with variance parameter σ2 = a2σ2
1 +b2σ2

2. In terms of standard

Brownian motions, the addition rule can be stated as follows:

σ1W1,t + σ2W2,t =
√
σ2

1 + σ2
2 + 2ρσ1σ2Wt (2.2)

where W1,t, W2,t, and Wt are all standard Wiener processes, and ρ is the correlation

coefficient of W1,t and W2,t. More generally, if Zt is an n-vector Brownian motion

with variance-covariance matrix Σ and M is a matrix of size k × n, then MZt is a

vector Brownian motion with variance-covariance matrix MΣM>.

These connections make it possible to express any (nonstandard) vector Brow-

nian motion as a linear transformation of a standard vector Brownian motion. If

for instance we have two Brownian motions W1,t and W2,t that are correlated with

correlation coefficient ρ, then we can think of these two processes as being obtained

from two independent Brownian motions Ŵ1,t and Ŵ2,t by the rules

W1,t = Ŵ1,t

W2,t = ρŴ1,t +
√

1− ρ2 Ŵ2,t.

In general, if Wt is a vector Brownian motion with variance-covariance matrix Σ,

then we can think of Wt as being generated by

Wt = MŴt

4A vector formed of normally distributed variables does not necessarily have a multivariate
normal distribution; see Exc. 7. Likewise, when several Brownian motions are taken into a vector,
the result is not necessarily a vector Brownian motion; however the examples that prove this point
are somewhat artificial and not likely to be met in practice. Also, when a vector is formed of several
independent Brownian motions, then the result is always a (standard) vector Brownian motion.
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where Ŵt is a standard vector Brownian motion, and M is any matrix such that

MM> = Σ. The decomposition of a positive definite matrix Σ in the form

Σ = MM> where M is lower triangular and has positive entries on the diago-

nal is known as the Cholesky decomposition.5 As in the scalar case, when the term

“vector Brownian motion” is used in this book, then a standard vector Brownian

motion is meant.

2.2 Stochastic integrals

As discussed in Section 1.2, it is of interest for the analysis of trading strategies to

be able to define integrals of the form
∫ T

0 φt dYt, even when Yt is not of bounded

variation. Such an integral should in some appropriate sense be a limit of expressions

of the form
n∑
j=0

φtj (Ytj+1 − Ytj )

where 0 = t0 < t1 < · · · < tn+1 = T is a partitioning of the interval [0, T ]; the

limit should be approached more and more closely as the partitioning becomes

finer and finer. However, the concept of Riemann-Stieltjes integration is not good

enough when Yt is not of bounded variation, because in this case one sequence of

refining partitions may lead to a different limit than another sequence does, and the

Riemann-Stieltjes integration theory doesn’t provide a clue as to which limit is the

“right” one. A more subtle notion of integral is required.

2.2.1 The idea of the stochastic integral

The purpose of this section is to discuss how to define an integral of the form∫ T
0 Xt dZt when Xt and Zt are stochastic processes that satisfy certain conditions.

The integral itself is in general also a stochastic variable. At first sight it may seem

that integration theory would only become more complicated when it is applied to

stochastic processes rather than to functions as in the Riemann-Stieltjes theory, but

the stochastic context does have its advantages; in particular, it makes it possible

to discard certain cases that occur with vanishing probability. Moreover, in applica-

tions to financial markets it is natural to think of prices as evolving in a stochastic

way. As will be discussed below, the stochastic integral can be used not only to

define results of trading strategies but also to develop models for the evolution of

prices.

5André-Louis Cholesky (1875–1918), French military officer and mathematician. Cholesky de-
veloped the matrix decomposition named after him to facilitate the solution of the least-squares
problems that he encountered in geodetic work. He died in battle a few months before the end of
World War I.
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So, let Xt and Zt be stochastic processes defined on an interval [0, T ]; suitable

requirements for these processes will be specified in a moment. For any partitioning

0 = t0 < t1 < · · · < tn+1 = T of the interval [0, T ], we can form the sum

n∑
j=0

Xtj (Ztj+1 − Ztj )

which defines a random number. One can ask oneself whether these random numbers

converge to some random variable, which then may be called the stochastic integral

on the interval [0, T ] of the process Xt (the integrand) with respect to the process

Zt (the integrator). Because we are discussing random numbers now, the notion

of “convergence” has more flexibility than it has in the deterministic case. For

instance we can make use of the notion of convergence in probability. Recall that

a sequence of random variables X1, X2, . . . is said to converge in probability to a

random variable X if for all ε > 0 we have

lim
n→∞

P (|Xn −X| > ε) = 0.

This means that, for any chosen positive number ε, cases in which the difference

between Xn and X is larger than ε may occur, but such cases are increasingly rare

as n becomes larger. Suppose now that the processes Xt and Zt satisfy the following

properties.

(i) The process Xt is adapted to the process Zt. This means intuitively that, for

any t, Xt can be written as a function of the values of Zs for s ≤ t.6

(ii) The process Zt is a martingale. This means that E|Zt| <∞ for all t, and that

the martingale condition

EsZt = Zs (2.3)

holds for all s and t with s < t, where the notation “Es” means “conditional

expectation with respect to the information available at time s”.7

It can be shown that, under suitable continuity and boundedness conditions, these

6A more precise definition would require material that is not included in this book. One has to
take care in particular when the process Zt is allowed to have jumps. However, within this book
only integrators are used that have continuous paths.

7More precisely, the information available at time s from the process Z. More general definitions
can be given in which information up to time s may also be taken from other processes.
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properties guarantee that one can indeed define a stochastic integral by the formula

∫ T

0
Xt dZt = lim

∆t↓0

T∑
0

Xtj (Ztj+1 − Ztj ) (2.4)

where the notation expresses that a limit is taken with respect to an arbitrary

sequence of refining partitions on the interval [0, T ]. The limit is understood in the

stochastic sense of convergence in probability. The first version of this key fact was

discovered by Itô, in the 1940s, and since then many extensions and refinements

have been made.

Since one can integrate against martingales but also against processes that have

paths of bounded variation (the latter on the basis of the classical Riemann-Stieltjes

integral), one can also integrate against processes that are sums of martingales and

bounded-variation processes, using the simple rule
∫
X d(Y +Z) =

∫
X dY +

∫
X dZ.

Moreover, in the modern theory of stochastic integration it has turned out that

martingales may be replaced by a closely related but somewhat more general type of

processes called local martingales.8 In this way, one ends up with “good integrators”

which are sums of local martingales and bounded-variation processes. The processes

obtained in this way are called semimartingales. It is definitely not true that every

stochastic process is a semimartingale,9 but it is generally accepted that continuous-

time models for asset pricing should be based on semimartingales.10 All processes

that we consider in this book are indeed semimartingales.

2.2.2 Basic rules for stochastic integration

If a trader is passive and just keeps a constant holding of an asset, say one unit,

then the result over a period from 0 and T is just the difference in the asset price

per unit at time T and the price at time 0. In mathematical terms, this property is

expressed by the continuous version of the telescope rule:

∫ T

0
dZt = ZT − Z0. (2.5)

8Note the contrast with normal usage: a black cat is a particular type of cat, but a local
martingale is not a particular type of martingale. Rather, it is the other way around: martingales
form a subclass of local martingales. Researchers sometimes use the term “true martingale” to
emphasize that a process is a martingale, and not just a local martingale.

9For instance, it can be shown that the process {Xt} defined by Xt = 3
√
Wt, where Wt is a

Brownian motion, is not a semimartingale.

10In fact, it was shown by Freddy Delbaen and Walter Schachermayer in 1994, in a paper in
Mathematische Annalen, that commonly held requirements for pricing models, as will be discussed
in Chapter 3, are violated by models allowing asset price processes that are not semimartingales.
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One can easily verify that this property is indeed satisfied by the stochastic integral

as defined in (2.4). It is a simple but essential and frequently used rule. Another

basic property of the stochastic integral is linearity :

∫ T

0
(aXt + bYt) dZt = a

∫ T

0
Xt dZt + b

∫ T

0
Yt dZt (2.6)

where a and b are constants. Linearity holds not only with respect to the integrand

but also with respect to the integrator:

∫ T

0
Xt d(aYt + bZt) = a

∫ T

0
Xt dYt + b

∫ T

0
Xt dZt. (2.7)

2.2.3 Processes defined by stochastic integrals

In the above we have considered the stochastic integral on a given interval from 0

to T , but of course the end point T can be varied. In the trading interpretation,

this means that the result is monitored continuously rather than just over a fixed

period. In this way one defines, starting from a given process {Zt} and a process

{Xt} adapted to {Zt}, a new process {Yt} by

Yt = Y0 +

∫ t

0
Xs dZs. (2.8)

This relation is the basis of the definition of stochastic differential equations that

will be given below. The process Yt is said to be an integral transform of the process

Zt by means of the process Xt; in economic terms, Yt can be viewed as the wealth

process that is generated from a given asset price process Zt by the application of a

trading strategy Xt. Due to the telescope rule (2.5), we can also write the integral

relation (2.8) in the differential form

dYt = Xt dZt (2.9)

where it is understood that this means that the integrals of both sides across any

interval are equal.

Under suitable boundedness assumptions11 relating to “admissible” trading

strategies as discussed in the Section 3.2.1 below, the following key statement can

be made.

Theorem 2.2.1 An integral transform of a martingale is again a martingale.

11For instance, a sufficient condition for the statement of Thm. 2.2.1 to hold, in the case in which
the integrator Zt is Brownian motion, is that the integral

∫ T
0
E[Xt]

2 dt is finite for all T ≥ 0.

25

OPEN PRESS TiU



Stochastic integrals Stochastic calculus

The boundedness assumptions referred to above are needed to justify the following

computation, in which t and s are arbitrary points in time with s ≥ t:

EtYs − Yt = Et(Yt +
∫ s
t Xu dZu)− Yt = Et

(∫ s
t Xu dZu

)
= Et

(
lim
∆t↓0

∑
Xti(Zti+1 − Zti)

)
= lim∆t↓0

∑
Et
(
Xti(Zti+1 − Zti)

)
= lim

∆t↓0

∑
EtEti

(
Xti(Zti+1 − Zti)

)
= lim∆t↓0

∑
EtXtiEti

(
Zti+1 − Zti

)
= lim

∆t↓0

∑
EtXti · 0 = 0.

The computation makes use of the tower law of conditional expectations: if s ≥ t,

then EtEsX = EtX.

In terms of trading, the theorem above means that if the price of an asset

follows a martingale, then the expected result of any trading in this asset is zero. In

particular, it is not possible to come up with a trading strategy that always produces

a nonnegative result and that leads to a positive result with zero probability, because

such a strategy would have a positive expected value. In other words, arbitrage is not

possible with respect to a martingale. The actual application to financial markets

takes into account that a probability measure may be used that is different from (but

equivalent to) the “real-world” measure, and that prices must be taken relative to a

numéraire in order to get the martingale property; see the discussion in Subsection

3.2.1. The martingale concept is a key notion from the mathematical point of view;

it turns out to be central in financial applications as well.

The following implication of Thm. 2.2.1 is important enough to be stated sepa-

rately. Appropriate boundedness conditions on integrand and integrator are again

tacitly assumed.

Theorem 2.2.2 The expected value of a stochastic integral with respect to a mar-

tingale is zero.

In particular, we have

E

∫ T

0
Xt dWt = 0 (2.10)

where Wt denotes a Brwonian motion and Xt can be any process that is adapted with

respect to Wt and that satisfies some mild boundedness conditions. The statement

of Thm. 2.2.2 can be phrased briefly as “you can’t beat the system” or, as Bachelier

wrote in the year 1900, “L’espérance mathématique du spéculateur est nulle”.12

12“The mathematical expectation of the speculator is nil.” Louis Bachelier (1870–1946) was a
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2.3 Stochastic differential equations

2.3.1 Definition

Before Itô’s work, stochastic processes were typically specified through their associ-

ated conditional densities (the distribution of Xt+h given Xt, for h > 0). The intro-

duction of the stochastic integral made it possible to develop a theory of stochastic

differential equations (SDEs). Whereas in the older approach the point of view is

“collective” (looking at the population as a whole), stochastic differential equations

represent an “individual” viewpoint in that they produce scenarios. This latter

viewpoint is often more convenient for modeling and analysis.13

Let Wt denote a Wiener process. An expression of the form

dXt = µ(t,Xt) dt+ σ(t,Xt) dWt (2.11)

is called a stochastic differential equation driven by Brownian motion. This means

that SDE uses a Brownian motion process as its source of uncertainty. One can also

define SDEs that are driven by other processes than Brownian motion, but these

will not be used in this book. The fluctuations of the process Wt and the passage

of time are transferred to the process Xt in a way that is determined by the two

functions µ and σ, which represent drift and volatility respectively.14

The formulation (2.11) still needs to be given a meaning, because neither the left

hand side nor the right hand side has been defined as such. Adding integral signs

to both sides leads to expressions that have already been defined, and this fact is

used in the following definition.

Definition 2.3.1 A stochastic process Xt that is adapted to the Wiener process

Wt is said to be a solution of the stochastic differential equation (2.11) if for all

t ≥ 0 we have

Xt = X0 +

∫ t

0
µ(s,Xs) ds+

∫ t

0
σ(s,Xs) dWs. (2.12)

French mathematician who made early contributions to mathematical finance; see Section 1.1. The
quote is from his PhD thesis, entitled Théorie de la spéculation (The Theory of Speculation).

13A framework built similarly on individual scenarios was actually already developed in 1940 by
the French mathematician Vincent Doblin (1915–1940). This was discovered only in 2000, when his
relatives gave permission to open a sealed letter that Doblin, while serving as a soldier in the French
army, had sent to the Académie des Sciences in Paris. Doblin’s construction generates scenarios
as modifications of Brownian motion by means of a transformation of the time parameter. This
is in general somewhat less convenient for purposes in finance than Itô’s construction, although
the idea of time change itself does have a financial interpretation (“business time”) and has been
incorporated into some financial models.

14More precisely, the function σ(t,Xt) indicates how shocks of the driving Brownian motion Wt

translate to shocks of the state process Xt. Therefore, σ should in fact be viewed as a correlation
parameter. For instance, its value might well be negative.
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Similar definitions apply to models that are driven by other processes than Brownian

motion.

Intuitively, a stochastic differential equation represents a situation in which one

process (the “driving process”, which in (2.11) is the Brownian motion Wt) generates

another process (the process Xt in the equation above). In such situations, the

relation between the processes Wt and Xt is nonanticipative, which means that

Xt at a given time t depends only on Ws for s ≤ t. Therefore it is natural to

require that the process {Xt} should be adapted to the process {Wt}. There is

also a technical reason for this requirement. If {Xt} is adapted to {Wt}, then the

processes {µ(t,Xt)} and {σ(t,Xt)}, which are just instantaneous transformations

of {Xt}, are adapted to {Wt} as well. This fact is needed to make sure that the

integrals appearing in (2.12) are well-defined, since adaptedness of the integrand to

the integrator is one of the requirements in the definition of the Itô integral.

According to the definition, to verify that a given process Xt is a solution of

the SDE (2.11), one should do the following: compute the integral transforms Yt :=∫ t
0 µ(s,Xs) ds and Zt :=

∫ t
0 σ(s,Xs) dWs, and verify that Xt = X0 +Yt+Zt for all t.

In practice this is not a very attractive method however. Usually, it is much more

convenient to use the Itô rule that will be discussed in Chapter 2. There are a few

cases in which it is possible to obtain explicit solutions for stochastic differential

equations. These SDEs lead to tractable models which play an important role in

the theory. Section 2.6 below presents the best known cases in which an explicit

solution can be found.

When the drift term in (2.11) is zero, the solution is of the form of a constant

plus an integral transform of the Wiener process:

Xt = X0 +

∫ t

0
σ(s,Xs) dWs.

It follows from Thm. 2.2.1 that in this case the solution Xt is a martingale, if the

volatility function σ(t,Xt) satisfies certain conditions.15 Models in mathematical

finance are usually constructed in such a way that these conditions are satisfied.

Exceptions can be found for instance in models that are designed to describe stock

market bubbles.

2.3.2 Euler discretization

If in (2.11) the infinitesimals are replaced by finite forward differences which we

write as ∆, so that ∆Xt means by definition Xt+∆t − Xt where X can be any

15For instance, the process generated by the SDE dXt = X1+α
t dWt, with α > 0, is not a

martingale. It is still a local martingale.
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time-dependent quantity,16 then we obtain

∆Xt = µ(t,Xt)∆t+ σ(t,Xt)∆Wt.

We may write this as

Xtk+1
= Xtk + µ(tk, Xtk)∆t+ σ(tk, Xtk)

√
∆t Zk (2.13)

where tk = k∆t and the Zk’s form a sequence of independent standard normal

variables. The time series model (2.13) is called the Euler discretization17 after a

similar method for ordinary differential equations. It can be shown that, under mild

conditions, the solutions of (2.13) converge (in an appropriate sense for stochastic

evolutions) to the solutions of (2.11) when the time step ∆t tends to zero. Euler

discretization can be applied to vector equations as well as to scalar equations. The

method can be used for instance to compute approximations to quantities relating

to the process Xt such as EXT , EX2
T , E[XT1XT2 ], and so on.

The Euler discretization can be motivated by noting that the exact expression

that links Xtk+1
and Xtk in the SDE (2.11) is

Xtk+1
= Xtk +

∫ tk+1

tk

µ(Xt) dt+

∫ tk+1

tk

σ(Xt) dWt.

The scheme (2.13) is obtained when the integrand in the first integral is approxi-

mated by µ(Xtk) and in the second integral by σ(Xtk).

Euler discretization is the workhorse of mathematical finance. It is by far the

most frequently used method to combine the convenience of continuous-time models

with the requirements of computation. While the corresponding method for ordi-

nary (i.e. non-stochastic) differential equations, as originally devised by Euler, is

nowadays considered to be mainly of historical interest, it turns out that the con-

vergence properties of the Euler scheme benefit from the smoothing effect that is

brought about by stochasticity.18

Implementation of the Euler method is in many cases straightforward; basically,

the recipe is to replace the differential d by the discrete forward difference ∆ every-

where. Nevertheless, there are some issues that may arise. One of these concerns

16Note that here we do not follow the convention that the use of subscript t indicates that the
corresponding quantity is known at time t; according to this convention we should write ∆Xt+∆t

rather than ∆Xt, and we should then interpret ∆ as a backward difference operator.

17Leonhard Euler (1707–1783), Swiss mathematician.

18The relatively poor performance of the Euler scheme in the deterministic case is reflected in the
stochastic case by the fact that the accuracy of the scheme tends to deteriorate when the volatility
is small relative to the drift.
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the preservation of theoretical properties. For instance, consider the SDE

dXt = µXt dt+ σXt dWt, X0 > 0. (2.14)

It can be proved (see Section 2.6.1) that this generates a stochastic process that is

always positive. However, the scenarios generated by the discretized version

Xtk+1
= Xtk + µXtk∆t+ σXtk

√
∆t Zk, Zk

i.i.d.∼ N(0, 1) (2.15)

are not guaranteed to remain positive. In fact, since Zk follows a normal distribution,

there is at every step a positive probability that Xtk+1
will be negative; once this

occurs, it is quite likely that subsequent simulated values of Xt will be negative as

well. For moderate values of the volatility σ, positive values of the drift parameter

µ, and small values of the time step ∆t, the probability of a breach of positivity is

small, even when a large number of scenarios is simulated. To be sure, however, the

basic scheme (2.15) might be amended, for instance by changing the sign of Xtk+1
if

in a particular scenario this quantity becomes negative. Note that replacing Xtk+1

in such a case by the closest nonnegative value, namely 0, would not be suitable

since this would cause all following values Xtk+i
to be 0 as well. A way to avoid the

problem altogether is to derive an SDE for logXt (it is discussed in Section 2.4.3

how to do this) and to simulate using that SDE, rather than from the SDE for Xt

itself. Afterwards, Xt can be recovered by taking the exponential, and positivity is

guaranteed.

Another potential issue is related to the preservation of financial properties.

Suppose for instance that one wants to generate scenarios for the evolution of port-

folio value under a certain trading strategy. To be specific, suppose that a model is

considered in which there are two traded assets whose time-t prices are denoted by

St and Bt, and that a trading strategy is defined in terms of t and St. The trading

strategy might prescribe to hold φ(t, St) units of assets St and ψ(t, St) units of asset

Bt at every time t, where the functions φ and ψ are defined in such a way that

the strategy is self-financing (conditions for this property in continuous time are

discussed in Section 3.1.2). A discretized scenario for portfolio value Vt could then

be generated as follows (where expressions for Stk+1
and Btk+1

should be generated

from a given model for the evolution of these prices):

Stk+1
= · · ·

Btk+1
= · · ·

Vtk+1
= Vtk + φ(tk, Stk)(Stk+1

− Stk) + ψ(tk, Stk)(Btk+1
−Btk). (2.16)

However, the self-financing property that holds for the strategy (φ, ψ) in continuous
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mu = @(t,x) 0.05*x; % drift

sigma = @(t,x) 0.2*x; % volatility

X0 = 100; % initial value

T = 1; % length of simulation interval

N = 100; % number of time steps

dt = T/N; % time step

Xs = zeros(1,N+1); % reservation of memory space

% --- initialization ---

t = 0; % initial time

Xs(1) = X0;

% --- time stepping ---

for k = 1:N

X = Xs(k); % read state value at time t(k)

dW = sqrt(dt)*randn;

dX = mu(t,X)*dt + sigma(t,X)*dW;

X = X+dX;

t = t+dt;

Xs(k+1) = X; % write state value at time t(k+1)

end

% --- output ---

plot(0:dt:T,Xs)

Code Example 2.1: Euler discretization for plotting of a single scenario.

time is only approximately true in the discretized version. The cumulative effect

of small errors in successive time steps may lead to an undesirable perturbation of

results. To avoid the numerical appearance or disappearance of money, it is better to

write the approximation scheme in such a way that the budget constraint is enforced

also in the discretized version. This can be ensured by replacing (2.16) by

Vtk+1
= Vtk + φ(tk, Stk)(Stk+1

− Stk) +
Vtk − φ(tk, Stk)Stk

Btk
(Btk+1

−Btk). (2.17)

The above equation describes exactly the portfolio value at time tk+1 when the

portfolio at time tk has φ(tk, Stk) units of asset St and the rest of the value in asset

Bt, assuming that these portfolio holdings are not changed between time tk and

tk+1. This is still only an approximation to the continuous-time strategy (φ, ψ),

but at least we are sure that no money is artificially created or lost through the

discretization. In general, it is recommended, whenever possible, to construct dis-

cretizations in such a way that the discretized version has a sensible meaning by

itself, in addition to being an approximation of a continuous-time model.

An example of Euler discretization is shown in Code Example 2.1. The script

that is shown aims at plotting a single scenario. Plotting scenarios can be useful

for instance as a reality check, but for computational purposes typically one needs

many scenarios to get approximate values for instance of expectation and variance

of quantities of interest at some given future time. One way to generate many
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mu = @(t,x) 0.05*x; % drift

sigma = @(t,x) 0.2*x; % volatility

X0 = 100; % initial value

T = 1; % length of simulation interval

M = 10^5; % number of scenarios

dt = 0.01; % time step

% --- initialization ---

t = 0;

X = X0;

% --- time stepping ---

while t < T-0.5*dt % subtract 0.5*dt for robustness

dW = sqrt(dt)*randn(M,1);

dX = mu(t,X)*dt + sigma(t,X).*dW;

X = X+dX;

t = t+dt;

end

% --- output ---

EX = mean(X);

sX = std(X);

disp([’calculated expected value: ’ num2str(EX)])

disp([’estimated 95% confidence interval: [’ ...

num2str(EX-1.96*sX/sqrt(M)) ’, ’ num2str(EX+1.96*sX/sqrt(M)) ’]’ ])

Code Example 2.2: Euler discretization for computing the mean of a variable that is
generated by a stochastic process. An estimated confidence interval is provided as well; this
does not take into account the discretization error.

scenarios would be simply to take the code as shown in Code Example 2.1) and to

write a loop around it in which the generation of a scenario is repeated as many

times as needed. However, many programming languages make it possible to use

vector coding, in which random variables can be represented as vectors whose entries

correspond to possible outcomes. An example of code written in this way is shown

in Code Example 2.2. Here it is assumed that the aim of the computation is to

compute an approximation of E[XT ] where Xt for 0 ≤ t ≤ T is described by a

given SDE. The intermediate values of Xt are not needed for this purpose; therefore

they are not stored, which saves memory space. Note also that the time stepping

loop is handled in a bit different way than in Code Example 2.1. The calculation

also provides an estimated 95% confidence interval, based on an application of the

central limit theorem.19

19The astute reader might remark that, in the code, 1.96 should be replaced by norminv(0.975),
where norminv is the Matlab command for the inverse of the standard normal cumulative distribu-
tion function, and that sqrt(M-1) should be used instead of sqrt(M). In view of the typical size of
errors in calculation of expected values by means of simulations, such subtleties are usually ignored.
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2.4 The univariate Itô rule

2.4.1 The chain rule for Riemann-Stieltjes integrals

The following statement is sometimes referred to as “the fundamental theorem of

calculus”: if f is a differentiable function, then for all t

f(t) = f(0) +

∫ t

0
f ′(s) ds. (2.18)

This is indeed a fundamental theorem because it states that the two basic operations

of calculus, integration and differentiation, are each other’s inverse. In the spirit of

the notation that we have used for stochastic differential equations, the rule above

may also be written in the form

df(t) = f ′(t) dt (2.19)

since, if integral signs are placed on both sides, one obtains∫ t

0
f ′(s) ds =

∫ t

0
df(s) = f(t)− f(0)

where the final equality follows from the telescope rule that holds for Riemann-

Stieltjes integrals as well as for Itô integrals (cf. (2.5)).

The integral in (2.18) is defined as a limit of sums, and so what is actually stated

in the fundamental theorem of calculus is:

lim
∆t↓0

T∑
0

f ′(ti)(ti+1 − ti) = f(T )− f(0) (2.20)

where the limit is taken in the sense of refining partitions on the interval [0, T ].

The argument of f ′ is taken to be ti in the above to preserve the parallel with

the stochastic integral, although in the deterministic case the limit actually doesn’t

depend on the choice of the argument as long as it is in the interval from ti to ti+1.

The fundamental theorem of calculus may be extended in the context of

Riemann-Stieltjes integrals. Here one integrates the given function f(t) (the in-

tegrand) not against time itself but against a given function of time g(t) (the in-

tegrator). In the theory of the Riemann-Stieltjes integral, it is required that the

integrator g is of bounded variation, which means that there is a constant M such

that
∑
|g(ti+1) − g(ti)| ≤ M for all partitions 0 = t1 < · · · < tk+1 = T . The

Riemann-Stieltjes integral is defined by

∫ T

0
f(t) dg(t) = lim

∆t↓0

T∑
0

f(ti)(g(ti+1)− g(ti)) (2.21)
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The univariate Itô rule Stochastic calculus

A special case arises when the integrand f(t) is of the form f(t) = φ′(g(t))

where φ is a smooth function. The function φ will be sometimes referred to as a

transformation because it does not depend directly on time but rather operates on

another function which does depend directly on time. If g is a continuous function

of bounded variation, then one can prove that the following formula holds:

lim
∆t↓0

T∑
0

φ′(g(ti))(g(ti+1)− g(ti)) = φ(g(T ))− φ(g(0)). (2.22)

This may also be written as∫ T

0
φ′(g(t)) dg(t) = φ(g(T ))− φ(g(0)). (2.23)

By the “telescope rule” (2.5), the right hand side can be written as
∫ T

0 d(φ(g(t))).

Therefore, analogously to (2.19) the rule (2.23) may also as a way of notation be

expressed by

dφ(g(t)) = φ′(g(t)) dg(t). (2.24)

This is a way of writing the chain rule, another very basic theorem of calculus.

Since (2.24) is a generalization of (2.19), it incorporates the fundamental theorem

of calculus as well.

2.4.2 Integrators of bounded quadratic variation

There exist continuous functions that are not of bounded variation on any interval.

Such functions are highly irregular, and it is not easy to write down examples in

explicit form. However, if one looks at the trajectories of Brownian motion, it turns

out that (with probability 1) they fall in this peculiar class of functions that are not

of bounded variation on any interval. To get an idea of how this comes about, note

that the expected value of the absolute value of the increment of Brownian motion

on an interval of length ∆t between successive partition points is on average of order√
∆t, since E(∆Wt)

2 = ∆t. If the number of partition points is increased by a factor

of 100, then the distance ∆t between successive partition points is reduced by the

same factor; the absolute values of the increments of the Brownian motion are on

average only reduced by a factor of 10 however, and so the sum of the absolute

values of the increments is increased by about a factor of 10. Therefore, there is

no bound to the sum of the absolute values of the increments when the partitions

are made finer and finer, and so the paths of Brownian motion are not of bounded

variation.

That may be bad news, but there is also some good news, since the same rea-

soning suggests that the paths of Brownian motion are still of bounded quadratic
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variation, that is, the sum of the squares of the increments corresponding to arbi-

trary sequences of partitions is bounded. This can indeed be proved,20 and moreover

it turns out that the property of bounded quadratic variation can be used to obtain

a version of the chain rule (2.24) which is valid for Brownian motion and for a range

of other stochastic processes. Let us see how this works.

The relation (2.22) states that, if g is a continuous function of bounded variation,

then the long-term increment φ(g(T ))− φ(g(0)) can be approximated to arbitrarily

high accuracy (by taking step sizes smaller) in terms of the short-term increments

g(ti+1)− g(ti) by means of the formula

φ(g(T ))− φ(g(0)) ≈
k∑
i=0

φ′(g(ti))(g(ti+1)− g(ti)). (2.25)

To get an idea of why this is true and what can be done when g is only of bounded

quadratic variation, use the discrete-time version of the telescope rule and write

down a Taylor series expansion:

φ(g(T ))− φ(g(0)) =
∑

φ(g(ti+1))− φ(g(ti))

=
∑

φ′(g(ti))(g(ti+1)− g(ti)) +
∑

1
2φ
′′(g(ti))(g(ti+1)− g(ti))

2 + · · · .
(2.26)

The first term on the right is the one that also appears on the right hand side of

(2.25), so the assumption that is made in the approximation (2.25) is that the other

terms in (2.26) can be ignored. It can be shown that, if g is a continuous function

of bounded variation, its quadratic variation sup
∑

(g(ti+1−g(ti))
2 (supremum over

all partitions) is zero. This fact is what causes the right hand side of (2.25) to be

equal to the left hand side in the limit. If the function g is not of bounded variation

but is still of bounded quadratic variation, then it can be shown that the “cubic

variation” sup
∑

(g(ti+1− g(ti))
3 is zero, which means that the terms of order three

in (2.26) can be neglected. The same argument applies to terms of higher order

than three. Consequently, the approximation formula is still valid for functions of

bounded quadratic variation if we include the quadratic term in the approximation.

There is no need to include any terms of higher order.

Suppose the function g is of bounded quadratic variation on [0, T ]; then it is also

of bounded quadratic variation on [0, t] for any t such that 0 < t < T . Introduce

the function

[g, g](t) := lim
∆t↓0

t∑
0

(
g(ti+1)− g(ti)

)2
. (2.27)

20More precisely, the statement holds true with probability 1 with respect to the paths of Brow-
nian motion, for any given sequence of partitions.
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The function [g, g] is called the quadratic variation function of g. It is a nondecreas-

ing function of t. If the transformation φ is twice continuously differentiable and g

is continuous and of bounded quadratic variation, then the approximation

φ(g(T ))− φ(g(0)) ≈
k∑
i=0

(
φ′(g(ti))(g(ti+1)− g(ti)) + 1

2φ
′′(g(ti))(g(ti+1)− g(ti))

2
)

(2.28)

becomes exact in the limit when the number of partition points is increased, no

matter in which way this is done, as long as the maximum distance between two

successive partition points tends to zero. Moreover it can be proved that the same

result is obtained if the squares of increments that appear in (2.28) are replaced by

increments of the quadratic variation function. Then we are justified in writing

φ(g(T ))− φ(g(0)) =

∫ T

0

(
φ′(g(t)) dg(t) + 1

2φ
′′(g(t)) d[g, g](t)

)
(2.29)

even though the usual conditions for Riemann-Stieltjes integration are not fulfilled.

On the basis of the continuous telescope rule, we can also write differential version

of the same formula:

dφ(g(t)) = φ′(g(t)) dg(t) + 1
2φ
′′(g(t)) d[g, g](t). (2.30)

The differential version is shorter and is often more convenient to use than the

integral form. The rule (2.30) is in fact a generalization of (2.24): if g is of bounded

variation, the rule above is still valid and in fact reduces to (2.24), because for such

a function the quadratic variation function [g, g](t) is zero.

What is the meaning of these considerations in practice? Financial data are

monitored at high frequencies but not truly continuously, and so one might say that

the whole discussion about bounded variation simply does not apply to for instance

stock prices. However, it is possible to ask whether the approximation in (2.25),

at the highest frequencies that can be obtained in practice, is noticeably improved

when it is replaced by (2.28). There is general agreement that it is indeed essential

to include the second-order term (but not a third-order term), so that modeling

in terms of the Brownian motion with its paths of bounded quadratic variation is

appropriate, and the formula (2.30) should be used instead of the formula (2.24)

which applies only to functions g of bounded variation.

2.4.3 First rules of stochastic calculus

It can be shown that the story above applies to stochastic processes as well. In

this case, of course, the deterministic Riemann-Stieltjes integral is replaced by the

stochastic integral. Instead of a quadratic variation function one defines a quadratic
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variation process:

[X,X]t = lim
∆t↓0

t∑
0

(Xti+1 −Xti)
2. (2.31)

We arrive at the following basic rule of stochastic calculus, which holds for trans-

formations φ that are twice continuously differentiable and for continuous processes

Xt of finite quadratic variation:

dφ(X) = φ′(X) dX + 1
2 φ
′′(X) d[X,X]. (2.32)

For brevity, subscripts have been dropped in the formula above. The same notational

convention will often be used below.

The formula (2.32) is known as the Itô rule. It is the key rule of stochastic

calculus.

The rule (2.30) is not very useful unless one has the quadratic variation function

in hand. The same holds for the stochastic version (2.32). It is therefore very

fortunate that the quadratic variation process of Brownian motion is known and is

in fact quite simple.

Theorem 2.4.1 The value at time t of the quadratic variation process of Brownian

motion is t.

In general the value of the quadratic variation of a given process is a stochastic vari-

able (in other words, the quadratic variation process is itself a stochastic process),

but the theorem above states that in the case of Brownian motion the quadratic

variation is a deterministic function of time and indeed a very simple one. The

theorem may be written as a formula:

[W,W ]t = t. (2.33)

This rule is often written in differential form:

d[W,W ]t = dt. (2.34)

The quadratic variation process of more general process Xt can be determined

by the rule below, which assumes that an expression is available for the stochastic

differential of Xt. This happens in particular when Xt is given by a stochastic

differential equation such as (2.11).
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The univariate Itô rule Stochastic calculus

Theorem 2.4.2 If {Xt} satisfies dXt = Yt dt + Zt dWt where both {Yt} and {Zt}
are adapted to {Wt}, then the quadratic variation process of {Xt} is given by

d[X,X]t = Z2
t dt. (2.35)

In particular, if Xt satisfies (2.11), then

d[X,X]t = σ2(t,Xt) dt. (2.36)

2.4.4 Examples

Below are some simple examples of applications of the Itô rule. More general versions

of the Itô rule and additional applications are discussed in the following section.

Example 2.4.3 Let f be the function f(x) = x2, and let Wt denote Brownian

motion as usual. According to the Itô rule, we have

d(W 2
t ) = 2Wt dWt + dt. (2.37)

Taking integrals on both sides, we find W 2
T = 2

∫ T
0 Wt dWt + T so that∫ T

0
Wt dWt = 1

2W
2
T − 1

2T. (2.38)

Without much effort, we explicitly computed a stochastic integral. Note the differ-

ence with (1.17).

Example 2.4.4 Applying the Itô rule to the fourth power of Brownian motion, one

finds

d(W 4
t ) = 4W 3

t dWt + 6W 2
t dt (2.39)

so that

W 4
T = 4

∫ T

0
W 3
t dWt + 6

∫ T

0
W 2
t dt. (2.40)

In particular, the expectations on both sides must be equal. The expectation of the

stochastic integral is zero by Thm. 2.2.2, whereas

E

∫ T

0
W 2
t dt =

∫ T

0
EW 2

t dt =

∫ T

0
t dt = 1

2T
2.

Taking T = 1, we find using (2.40) that EW 4
1 = 3. In other words, the fourth
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moment of a standard normal variable is equal to 3. This well known fact can also

be obtained by standard integral calculus.

Example 2.4.5 Consider the stochastic differential equation

dXt = µXt dt+ σXt dWt, X0 given (2.41)

where µ and σ are constants. Define Yt by Yt = logXt. According to the Itô rule,

we have

dY =
1

X
dX − 1

2X2
d[X,X]. (2.42)

Since from (2.41) we have dX = µX dt + σX dW and d[X,X] = σ2X2 dt, the

equation above can be rewritten as

dY = (µ− 1
2σ

2) dt+ σ dWt. (2.43)

This equation can be solved by direct integration, since the right hand side does not

depend on Y . The solution is

Yt = Y0 + (µ− 1
2σ

2)t+ σWt. (2.44)

Because Yt = logXt we have conversely Xt = expYt, and it can be concluded that

the process Xt defined by

Xt = X0 exp[(µ− 1
2σ

2)t+ σWt] (2.45)

solves the stochastic differential equation (2.41). The process defined by (2.41) or

equivalently by (2.45) is called the geometric Brownian motion. As is seen from

(2.45), the process only takes positive values, and its distribution at any given

time t is lognormal. The geometric Brownian motion is the most popular model of

mathematical finance. The use of this model for the evolution of stock prices was

initiated by Paul Samuelson.21

2.4.5 Variance of the stochastic integral

Let Xt be an integral transform of Brownian motion:

Xt =

∫ t

0
Zs dWs (2.46)

where the process {Zt} is adapted to {Wt} and satisfies suitable boundedness as-

sumptions. We already know that EXt = 0 for all t (Theorem 2.2.2, “you can’t

21Paul A. Samuelson (1915–2009), American economist; Nobel prize 1970.
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beat the system”). Using the Itô calculus, we can also compute the variance of Xt.

The process {Xt} satisfies dXt = Zt dWt. According to the Itô rule and Thm. 2.4.2,

we have dX2 = 2X dX + d[X,X] = 2ZX dW + Z2 dt, so that

EX2
T = E

∫ T

0
dX2

t = 2E

∫ T

0
ZtXt dWt + E

∫ T

0
Z2
t dt =

∫ T

0
EZ2

t dt. (2.47)

In this way we find:

var
(∫ T

0
Zt dWt

)
=

∫ T

0
EZ2

t dt. (2.48)

Suppose now that the process Zt is in fact a deterministic function g(t). The

stochastic integral
∫ T

0 g(s) dWs is the limit of stochastic variables of the form∑
g(ti)(Wti+1 −Wti); because the coefficients g(ti) are deterministic and the Brow-

nian increments Wti+1 −Wti are normally distributed, each of these variables is a

linear combination of normal variables and therefore is itself normally distributed.

As a result, the limit
∫ T

0 g(s) dWs also follows a normal distribution. We know that

its expectation is zero, and its variance is given by (2.48). Therefore the distribu-

tion of the stochastic integral with deterministic integrand
∫ T

0 g(s) dWs is completely

determined. We have:

∫ T

0
g(t) dWt ∼ N(0, σ2) with σ2 =

∫ T

0
g2(t) dt. (2.49)

The stochastic variable
∫ T

0 Zt dWt is in general not normally distributed when Z

is not deterministic. For instance, it is seen from (2.38) that
∫ 1

0 Wt dWt follows a

shifted χ2 distribution with one degree of freedom.

2.5 The multivariate Itô rule

The standard chain rule has a multivariate version, which makes use of partial

derivatives. The notation is a bit more complicated than in the single-variate

case. Suppose that φ(x1, . . . , xn) is a smooth real-valued function of n vari-

ables, and let its partial dervatives be denoted by (∂φ/∂xi)(x1, . . . , xn). If gi(t)

(i = 1, . . . , n) are functions of bounded variation, then the composite function

f(t) := φ(g1(t), . . . , gn(t)) is a real-valued function of t, and the following version of

the chain rule holds:

df(t) =

n∑
i=1

∂φ

∂xi
(g1(t), . . . , gn(t)) dgi(t). (2.50)
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The formula may look more easily digestible when it is written in shorthand notation,

as follows:

df =

n∑
i=1

∂φ

∂xi
dgi. (2.51)

If the functions gi are only assumed to be of finite quadratic variation, then the

second-order terms have to be taken into account. The resulting formula involves

not only quadratic variation functions but also quadratic covariations between the

functions gi. In general, the quadratic covariation of two functions g1 and g2 is

defined by

[g1, g2](t) = lim
∆t↓0

t∑
0

(g1(ti+1)− g1(ti))(g2(ti+1)− g2(ti)). (2.52)

It should be noted that the notation is consistent; that is, the quadratic variation

as defined in (2.27) is recovered in the case that g1 = g2 = g. The multivariate

chain rule in the case of functions of finite quadratic variation reads as follows: if

f(t) = φ(g1(t), . . . , gn(t)), then (in shorthand notation)

df =
n∑
i=1

∂φ

∂xi
dgi + 1

2

n∑
i=1

n∑
j=1

∂2φ

∂xi∂xj
d[gi, gj ](t). (2.53)

Essentially the same equation holds for processes of finite quadratic variation.

The multivariate Itô rule is stated as follows, again in shorthand notation: if

Y = φ(X1, . . . , Xn), then

dY =

n∑
i=1

∂φ

∂xi
dXi + 1

2

n∑
i=1

n∑
j=1

∂2φ

∂xi∂xj
d[Xi, Xj ]. (2.54)

In longhand notation, this would read as follows:

dYt =

n∑
i=1

∂φ

∂xi
(X1,t, . . . , Xn,t) dXi,t + 1

2

n∑
i=1

n∑
j=1

∂2φ

∂xi∂xj
(X1,t, . . . , Xn,t) d[Xi, Xj ]t.

(2.55)

2.5.1 Nine rules for computing quadratic covariations

In order to work with the multivariate Itô rule, one needs to be able to compute

quadratic covariations. This section provides a number of calculus rules for this

purpose. In the rules given below, the term “process” is always understood as

“semimartingale” (see Section 2.2.1). It can be shown that semimartingales do have

well-defined quadratic variation and covariation processes.
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(i) For all X and Y , one has [X,Y ] = [Y,X].

(ii) For all X, Y , and Z, one has [X,Y + Z] = [X,Y ] + [X,Z].

(iii) If a is a constant, then [aX, Y ] = a[X,Y ].

(iv) The quadratic covariation of any semimartingale with a continuous process of

bounded variation is zero. In particular, [X, g] = 0 whenever g is a determin-

istic continuous function of bounded variation.

(v) If W1 and W2 are Wiener processes with correlation coefficient ρ, then

d[W1,W2] = ρ dt. (2.56)

In particular, if W1 and W2 are independent Brownian motions, then

d[W1,W2] = 0.

(vi) If dX = Y dZ, then

d[X,V ] = Y d[Z, V ]. (2.57)

(vii) If dX1 =
∑k

i=1 Y
(1)
i dZ

(1)
i and dX2 =

∑m
i=1 Y

(2)
i dZ

(2)
i then

d[X1, X2] =
k∑
i=1

m∑
j=1

Y
(1)
i Y

(2)
j d[Z

(1)
i , Z

(2)
j ]. (2.58)

This follows by repeated application of (vi) and the linearity rule (ii). In

particular, if dX1 = Y1 dt+ Z1 dW1 and dX2 = Y2 dt+ Z2 dW2, then

d[X1, X2] = Z1Z2ρ dt (2.59)

where ρ is the correlation coefficient of the Wiener processes W1 and W2.

(viii) The quadratic covariation process of two semimartingales is itself a process

of bounded variation. If X is continuous and Y is continuous, then [X,Y ] is

continuous as well. In particular, we have

[X, [Y,Z]] = 0 (2.60)

when X is a semimartingale and Y and Z are continuous semimartingales.22

22This property does not necessarily hold when the semimartingales involved are not continuous.
For instance, if Xt is the standard Poisson process (with jumps of size 1), then [X,X]t = Xt, and
consequently [X, [X,X]]t = Xt.
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(ix) If φ(z1, . . . , zn) is a smooth function of n variables and the processes X and

Z1, . . . , Zn are continuous semimartingales, then

d[X,φ(Z1, . . . , Zn)] =
n∑
i=1

∂φ

∂zi
(Z1, . . . , Zn) d[X,Zi]. (2.61)

This follows from the Itô rule and from rules (vi) and (viii). In particular, we

have

d[X,Y Z] = Y d[X,Z] + Z d[X,Y ]. (2.62)

As a way of remembering the rules above, one can use the following informal ex-

pressions, in which d[X,Y ] is written as dX dY :

(i) (dt)2 = 0

(ii) dt dW = 0

(iii) (dW )2 = dt

(iv) dW1 dW2 = ρ dt.

Applying these expressions together with linearity, one finds for instance

(µX dt+ σX dW1)(µY dt+ σY dW2) = σXσY ρ dt

which is an alternative way of writing (2.59).

2.5.2 More examples

Example 2.5.1 The rule that governs differentials of products of processes can be

obtained as a special case of the multivariate Itô rule. Indeed, the product function

φ(x, y) = xy is a function of two variables, and its second partial derivatives are

given by
∂2f

∂x2
(x, y) =

∂2f

∂y2
(x, y) = 0,

∂2f

∂x∂y
(x, y) = 1.

From the general formula (2.54), it follows that

d(XY ) = Y dX +X dY + d[X,Y ]. (2.63)

This is known as the stochastic product rule. Compare this rule to the product

rule of standard calculus, which can be written in the form d(fg) = f dg + g df .

Similarly, one can derive for instance also a stochastic quotient rule.
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Example 2.5.2 Suppose that we have a scalar process Xt and we form a new pro-

cess Yt by Yt = φ(t,Xt) where φ(t, x) is a smooth function of two variables. We

can then find dY by applying the multivariate Itô rule. Since t is a deterministic

function of bounded variation, the quadratic variation [t, t] and the quadratic co-

variation [X, t] are both zero. The only Itô correction term that remains is therefore

the one that involves the second derivative of φ with respect to x. As a result, we

have the formula

dY =
∂φ

∂t
dt+

∂φ

∂x
dX +

1

2

∂2φ

∂x2
d[X,X] (2.64)

which is called the time-dependent Itô rule.

Example 2.5.3 Similarly to how (2.48) was obtained, one can derive the following

formula:

cov
(∫ T

0
Xt dWt,

∫ T

0
Yt dWt

)
=

∫ T

0
E(XtYt) dt. (2.65)

In particular, for two stochastic integrals with deterministic integrands:

cov
(∫ T

0
f(t) dWt,

∫ T

0
g(t) dWt

)
=

∫ T

0
f(t)g(t) dt. (2.66)

This generalizes the variance rule as stated in (2.49). More generally, one can obtain

in a similar way the distribution of a random vector of the form
∫ T

0 F (t) dWt where

F (t) is a deterministic n× k matrix function, and Wt is a k-dimensional Brownian

motion.

2.6 Explicitly solvable SDEs

As is also the case for ordinary differential equations, only some special types of

stochastic differential equations allow explicit solutions. In the case of SDEs, one

usually says that a solution is “explicit” if it is obtained by a direct operation on a

(vector) Brownian motion.

2.6.1 The geometric Brownian motion

It was already found in Example 2.4.5 that the solution of the stochastic differential

equation

dXt = µXt dt+ σXt dWt, X0 given (2.67)

is provided by the geometric Brownian motion process:

Xt = X0 exp
(
(µ− 1

2σ
2)t+ σWt

)
. (2.68)
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In the example, the solution was derived by a log transformation of the SDE, which

resulted in an easily solvable linear equation. However, using the time-dependent Itô

rule (2.64), one can also verify directly that (2.68) solves (2.67). Indeed, given (2.68),

one can write (think of Xt as Xt = f(t,Wt) with f(t, x) = X0 exp((µ− 1
2σ

2)t+σx)):

dXt = (µ− 1
2σ

2)Xt dt+ σXt dWt + 1
2σ

2Xt dt = µXt dt+ σXt dWt.

The expectation and variance of the geometric Brownian motion can be obtained

from the standard formulas for the expectation and variance of a lognormal variable,

which are

E
[
ea+bZ

]
= ea+ 1

2
b2 , var

(
ea+bZ

)
=
(
eb

2 − 1
)
e2a+b2 (Z ∼ N(0, 1)). (2.69)

For the process given by (2.45), this implies

E[Xt] = eµtX0, var(Xt) =
(
eσ

2t − 1
)
e2µtX2

0 . (2.70)

The expression for the expectation can alternatively be found by noting that (2.67)

implies

Xt −X0 =

∫ t

0
µXs ds+

∫ t

0
σXs dWs.

Taking expectations on both sides, one gets

E[Xt]−X0 = E

∫ t

0
µXs ds = µ

∫ t

0
E[Xs] ds.

By differentiation, one obtains an ordinary (i.e. non-stochastic) differential equation

for the deterministic function E[Xt]:

d

dt
E[Xt] = µE[Xt].

The solution of this is the exponential function shown in (2.70). The expression for

the variance can be obtained in a similar way, without using the explicit form of

the solution. Given that an expression for the expectation is already available, it is

enough to find an expression for the second moment. From (2.67), it follows that

dX2
t = 2Xt dXt + d[X,X]t = (2µ+ σ2)X2

t dt+ 2σX2
t dWt.

This leads to the ODE
d

dt
E[X2

t ] = (2µ+ σ2)E[X2
t ]

from which it follows that E[X2
t ] = e(2µ+σ2)tX2

0 . Subtracting the square of the

expectation, one finds the expression for the variance in (2.70).
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2.6.2 The Ornstein-Uhlenbeck process

If in a stochastic differential equation for Xt (possibly a vector) the drift is a linear

function of Xt and the volatility does not depend on Xt, then one speaks of a linear

SDE. An example of a stochastic differential equation of this type is provided by

the one-dimensional SDE

dXt = −aXt dt+ σ dWt. (2.71)

The minus sign is used here because typically in applications the coefficient mul-

tiplying Xt in the drift term is negative. As is usually the case with differential

equations, solving (2.71) requires a little trick: write

dXt + aXt dt = σ dWt

⇔ eat(dXt + aXt dt) = eatσ dWt

⇔ d
(
eatXt

)
= eatσ dWt

Now apply the telescope rule. One finds

Xt = e−atX0 +

∫ t

0
e−a(t−s)σ dWs. (2.72)

This is the sum of a deterministic function and a stochastic integral with deter-

ministic integrand. The distribution of Xt for any given t is therefore normal with

expectation EXt = e−atX0 and variance

var(Xt) =

∫ t

0
e−2a(t−s)σ2 ds =

1− e−2at

2a
σ2.

In particular, if the coefficient a is positive, then

lim
t→∞

var(Xt) =
σ2

2a
.

Expressions for the first and second moment could also have been derived, without

solving the SDE, by the technique of constructing ordinary differential equations for

these quantities.

The process (2.72), with a positive, is called the Ornstein-Uhlenbeck process23

(OU process) with parameters a and σ. When the coefficient a is positive, the drift

term in (2.71) is negative when Xt is positive and positive when Xt is negative, so

that the process has the tendency to go down when it is above zero and to go up

23Leonard S. Ornstein (1880–1941), Dutch physicist. George E. Uhlenbeck (1900–1988),
Dutch/US physicist.
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when it is below zero. The process is said to be mean-reverting. The term “mean”

refers here to the value taken by EXt as t tends to infinity, which is 0 as noted

above. It is possible to construct a process that reverts to a nonzero mean simply

by adding a constant to the process described by (2.71). The stochastic differential

equation is in this case replaced by

dXt = a(c−Xt) dt+ σ dWt (2.73)

where c is a constant representing the mean that the process reverts to. This

generalized version is also called an OU process.

A process {Xt} is said to be stationary if, for any set of time indices t1, . . . , tk

and any h > 0, the joint distribution of Xt1 , . . . , Xtk is the same as the joint dis-

tribution of Xt1+h, . . . , Xtk+h. Intuitively, this means that the process looks the

same everywhere; in other words, it is not possible, by looking at the trajectories

within a fixed time window, to tell where on the time axis this window is located.

The OU process is not stationary, but it is asymptotically stationary, meaning that,

for increasingly larger values of t, the process satisfies the stationarity conditions

increasingly closely. The reason why the process is not stationary is that, for small

values of t, the variance is smaller than the limit value, because we let the process

start from a deterministic initial condition; also, the expected value may deviate

from the asymptotic value 0 if the initial condition is not 0. One can get a strictly

stationary version of the OU process by taking the initial condition not as a deter-

ministic number, but as a draw from a normal distribution with mean 0 and variance
σ2

2a .

2.6.3 Higher-dimensional linear SDEs

Solution formulas similar to (2.72) can be given for the broad class of linear stochastic

differential equations of the form

dXt = (AXt + g(t)) dt+B(t) dWt (2.74)

where A is a constant matrix, g(t) is a vector function that depends deterministically

on time, and B(t) is a matrix depending deterministically on time. As usual, Wt

is a vector Brownian motion. This equation may be compared to the deterministic

differential equation
dx

dt
(t) = Ax(t) + g(t)

where x(t) is a deterministic vector function of time. In the scalar case, an equation

of the form
dx

dt
(t) = ax(t) + g(t)
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can be solved by writing it as

d

dt
(e−atx(t)) = e−atg(t)

which leads to

x(t) = eatx(0) +

∫ t

0
ea(t−s)g(s) ds. (2.75)

Essentially the same method is applied in the vector case, also in the situation (2.74)

in which there is a stochastic forcing term.24 To write the solution in a compact

form we need the notion of the matrix exponential function, which is defined by

eAt =
∞∑
k=0

tk

k!
Ak (2.76)

where A is a square matrix. It can be verified that the sum converges for any matrix

A, and that the solution of the vector differential equation

dx

dt
(t) = Ax(t) (2.77)

is given by

x(t) = eAtx(0).

Using this notation, the equation (2.74) can now be solved by essentially the same

method as was used in the case of the OU process. Rewrite (2.74) as

d(e−AtXt) = e−Atg(t) dt+ e−AtB(t) dWt. (2.78)

On the left hand side we apply the stochastic product rule, which however in this

case is the same as the deterministic product rule because the entries of the matrix

eAt are continuous functions of bounded variation. We obtain the following solution

of (2.74):

Xt = eAtX0 +

∫ t

0
eA(t−s)g(s) ds+

∫ t

0
eA(t−s)B(s) dWs. (2.79)

The expression (2.79) indicates that the solution of the SDE (2.74) can be written

as the sum of a deterministic function and a stochastic integral with deterministic

integrand, which defines a normally distributed random variable. Therefore we can

conclude that at any time t, the value Xt of the solution of the stochastic differential

equation (2.74) is normally distributed. The same conclusion still holds if the initial

condition X0 is stochastic rather than deterministic, as long as X0 is drawn from a

normal distribution. Also, not only can we say that Xt follows a normal distribution,

24A “forcing term” in a differential equation is a function of time that appears in the equations
and that is determined exogenously, i.e. not as part of the solution of the differential equation.
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but also that any sequence of values (Xt1 , . . . , Xtk), where t1, . . . , tk are given time

points, forms a jointly normally distributed set of random variables. A process that

has this property is called a Gaussian process.25 Such processes can be described

completely in terms of expectations and covariances.

Let us see what we can say, for a given time point t, about the expectation and

the variance of the random variable Xt defined by (2.74). Since the expectation of

the stochastic integral in (2.79) is zero (indeed, it is an integral with respect to a

martingale), we have

EXt = eAtEX0 +

∫ t

0
eA(t−s)g(s) ds. (2.80)

This shows that m(t) := EXt as a function of t satisfies the deterministic linear

differential equation
dm

dt
(t) = Am(t) + g(t) (2.81)

which could also have been obtained directly from (2.74) in a similar way as discussed

in the case of the GBM.

To determine the variance of Xt, introduce Zt := Xt −m(t) and note that Zt

satisfies the stochastic differential equation

dZt = AZt dt+B(t) dWt. (2.82)

Let the variance of Xt (the variance-covariance matrix if Xt is multivariate) be

denoted by H(t) = EZtZ
>
t . Since it follows from (2.82) by the product rule that

d(ZtZ
>
t ) =

(
AZtZ

>
t + ZtZ

>
t A

> +B(t)B>(t)
)
dt+

(
· · ·
)
dWt (2.83)

(where the precise form of the volatility term is unimportant for our present pur-

poses), the following deterministic differential equation holds for H(t) :

dH

dt
(t) = AH(t) +H(t)A> +B(t)B>(t). (2.84)

It can be verified by direct calculation that the solution of this equation is given by

H(t) = eAtH(0)eA
>t +

∫ t

0
eA(t−s)B(s)B>(s)eA

>(t−s) ds. (2.85)

This could also have been obtained from the solution formula (2.79) by making

use of the rule (2.49) for the variance of a stochastic integral with deterministic

integrand.

25Carl Friedrich Gauss (1777–1855), German mathematician. “Gaussian distribution” is an al-
ternative name for the normal distribution.
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From the explicit solution formula for Xt, one may compute what is called the

autocovariance of the process, namely

cov(Xt, Xs) = eA(t−s)H(s) (t ≥ s). (2.86a)

The expression above holds for s ≤ t. Using the fact that in general cov(Z1, Z2) =

cov(Z2, Z1)>, one can derive that

cov(Xt, Xs) = H(t)eA
>(s−t) (t ≤ s). (2.86b)

Suppose now that the initial condition X(0) is itself a random variable which follows

a normal distribution with expectation 0 and variance-covariance matrix H, where

H is a solution of the matrix equation

AH +HA> +BB> = 0. (2.87)

Then the differential equation (2.84) is solved by the constant function H(t) = H.

From (2.86), it follows that in this case the covariance matrix of Xt and Xs depends

only on the time difference t− s; in other words, the covariance of Xt and Xs is the

same as the covariance of Xt+h and Xs+h, for any h ≥ 0. It follows that the process

defined by

dXt = AXt dt+B dWt, X0 ∼ N(0, H) (2.88)

where H satisfies the matrix equation (2.87) is an example of a stationary process

(its statistical properties do not change over time).

The matrix equation (2.87) is known as the Lyapunov equation.26 The left

hand side is a linear transformation of the unknown H and so (2.87) is a linear

equation. The equation does not always have a nonnegative definite solution. The

conditions under which a nonnegative definite solution exists are closely related to

the conditions under which the solutions of the deterministic equation (2.77) are

bounded as t tends to infinity; the matrix A needs to be stable, which implies that

it should not have any eigenvalues with positive real part.27

2.7 Girsanov’s theorem

Taking expectations under different measures is an important notion in finance. It

is shown in financial theory that risk can be taken into account by a pricing rule

based on expectation under a measure that is different from the real-world measure.

26Aleksandr Michailovich Lyapunov (1857–1918), Russian mathematician.

27Boundedness of the solutions of the equation (2.77) was the original purpose for which Lyapunov
developed the equation named after him.
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Changes of measure can be expressed by the so-called Radon-Nikodym derivative.28

If P and Q are given measures, and if there exists a random variable θ such that

EQX = EP θX (2.89)

for all random variables X, then θ is said to be the Radon-Nikodym derivative of Q

with respect to P , and one also writes dQ
dP instead of θ. For example, in the case of

random variables that take only finitely many different values, the Radon-Nikodym

derivative gives, for each possible outcome, the ratio of the Q-probability versus the

P -probability. The expectation under P of the Radon-Nikodym derivative θ must

be equal to 1, because EP θ = EQ1 = 1; so the average value of θ (in the sense of P )

is equal to 1. This means that if θ is smaller than 1 in some regions of the outcome

space, it must be larger than 1 in other regions; the change of measure is a shift of

probability mass.

The idea of a change of measure can be applied not only for random variables

but also for random processes. The change of measure is then not indicated by

a random variable but by a stochastic process, called the Radon-Nikodym process.

The Radon-Nikodym process {θt} is an adapted process such that, for all 0 ≤ s ≤ t,

EQs Xt = EPs
θt
θs
Xt (2.90)

where Xt is a stochastic variable whose value is known at time t, and the subscript

s indicates that expectation is taken conditional on information available at time

s. The change of measure between time points s and t depends in general on both

time points, as indicated above. The quotient form θt/θs ensures that the law of

iterated expectations holds:

EQt1E
Q
t2
Xt3 = EPt1

θt2
θt1

EPt2
θt3
θt2

Xt3 = EPt1
θt3
θt1

Xt3 = EQt1Xt3 (2.91)

for 0 ≤ t1 ≤ t2 ≤ t3. In analogy with the fact that the P -expectation of the

Radon-Nikodym derivative must be equal to 1, the Radon-Nikodym process satisfies

EPs
θt
θs

= EQs 1 = 1, or in other words EPs θt = θs; that is to say, the Radon-Nikodym

process is a P -martingale. Moreover, just as in the case of random variables, the

process must be positive for the two measures P and Q to be equivalent.

Stochastic differential equations are used as models for the evolution of stock

prices and other variables of interest in financial markets, but they also offer a

convenient way to generate positive martingales, and hence to describe a change

of measure. Specifically, given a k-vector continuous semimartingale λt, one can

28Johann Radon (1887–1956), Austrian mathematician. Otton M. Nikodym (1887–1974), Polish
mathematician.
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generate from this a new process θt by means of the stochastic differential equation

dθt = −θtλ>t dWt, θ0 = 1 (2.92)

where Wt is a k-vector Brownian motion. The absence of a drift term in (2.92)

implies that the solution θt is a local martingale; if the process λt satisfies suitable

boundedness conditions, then θt is a true martingale. Moreover, since the process

starts at 1 and its volatility becomes small as θt approaches zero, the process θt

remains positive for all time t, again assuming certain boundedness conditions on λt.

In fact, one can show that, in a model in which the stream of incoming information

is given by the vector process Wt, every continuous positive martingale can be

written as the solution of an SDE of the form (2.92), so that in fact there is no

loss in generality in considering changes of measure that are generated by equations

of the form (2.92). In fact one may think of (2.92) as providing an alternative

parametrization of a change of measure, in terms of the process λt. There are

advantages to using λt rather than θt, because θt is subject to rather strict conditions

(it has to be a positive martingale), whereas λt can be quite a general process.29

As will be seen in the following chapters, there are also quite good reasons from the

perspective of financial modeling to work with λt rather than with θt directly.

Since in this book we work with models that are driven by Brownian motion,

the effect of a change of measure on these models is captured completely if we can

describe its effect on the Brownian motion process. The characteristics of Brownian

motion are described in terms of its increments in Def. 2.1.1. The properties listed

there are stated in terms of expectation and variance, and so they are sensitive to

the choice of the probability measure. To be more precise about this, let us look

at what happens to the distribution of increments of a Brownian motion process

Wt when a change of measure is applied (from the original measure P to the new

measure Q) that is induced by a process λt, as described in (2.92). Assume for

simplicity that the process Wt is scalar (k = 1); the vector case is not essentially

different.

Generally speaking, the distribution of many random variables can be investi-

gated by means of the moment generating function, which is defined by MX(α) =

E[eαX ] (if the expectation is finite), where α ∈ R and X is a given random variable.

For instance, if one finds that the moment generating function of a random variable

is of the form exp(αµ+ 1
2α

2σ2), then that proves that this variable follows a normal

distribution with expectation µ and variance σ2. To study the distribution of the

increments of Wt under Q, one can therefore look at the function EQ[exp(α∆Wt)],

29In particular, there are no sign conditions on λt. The minus sign on the right hand side in
(2.92) is consequently redundant, since λt could be replaced by −λt. It is however conventional to
use a minus sign here (see Thm. 2.7.1).
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where ∆Wt = Wt+∆t −Wt, t is a fixed point in time, and ∆t is a (small) time step.

By definition, we have

EQt
[
exp(α∆Wt)

]
= EPt

[θt+∆t

θt
exp(α∆Wt)

]
= EPt

[
exp(log θt+∆t − log θt + α∆Wt)

]
.

Since the increment of the process log θt appears here, it is natural to employ the

SDE for this process that is obtained by applying Itô’s formula to (2.92):

d(log θt) = −1
2λ

2
t dt− λt dWt.

Using the assumption that the process λt is continuous, one can write

log θt+∆t − log θt ≈ −1
2λ

2
t∆t− λt∆Wt

for small ∆t. By the standard formula E[eaZ ] = e
1
2
a2

for Z ∼ N(0, 1), one finds

EPt exp(−1
2λ

2
t∆t− λt∆Wt + α∆Wt) = exp(−1

2λ
2
t∆t+ 1

2(α− λt)2∆t)

= exp(−αλt∆t+ 1
2α

2∆t).

The conclusion from the calculations is that

EQt
[
exp(α∆Wt)

]
≈ exp

(
−αλt∆t+ 1

2α
2∆t

)
where the approximation is increasingly accurate as ∆t becomes smaller. In other

words, for small increments, the distribution of the increment ∆Wt under the new

measure Q that is described by (2.92), as seen from time t, is approximately normal

with expectation −λt∆t and variance ∆t. If we add λt∆t to the increment, we

obtain approximately a normal variable with expectation 0 and variance ∆t. These

are the properties of a Brownian motion. The famous theorem of Girsanov30 states

that, in the infinitesimal limit, one indeed gets a Brownian motion in this way.

Theorem 2.7.1 (Girsanov, 1960) Let Wt be a k-vector Brownian motion and let

λt be a k-vector process adapted to Wt. If the process λt satisfies mild boundedness

conditions, then the scalar process θt defined by (2.92) is a positive P -martingale

and we may take it as a Radon-Nikodym process that defines a change of measure

from the original measure P to a new measure Q. Under this new measure, the

process W̃t defined by

dW̃t = λt dt+ dWt, W̃0 = 0 (2.93)

is a k-vector Brownian motion.

30Igor Vladimirovich Girsanov (1934–1967), Russian mathematician. The actual theorem as
proved by Girsanov is stated in a much more general setting than is shown here.
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Recall that the term “vector Brownian motion” is used in this book to refer to

standard vector Brownian motion. In other words, it is assumed in the theorem

that the components of the process Wt are independent under P , and part of the

conclusion is that the components of the process W̃t are independent under Q.

The theorem implies that stochastic differential equations respond in a quite

simple way to a change of measure, when this change of measure is given by a

process λt in the way of (2.92). Suppose that a process Xt satisfies a stochastic

differential equation of the form

dXt = µ(t,Xt) dt+ σ(t,Xt) dWt (2.94)

where Wt is a Brownian motion under P . It follows from Girsanov’s theorem that,

when a new measure Q is defined through (2.92) and (2.90), the process Xt also

satisfies the stochastic differential equation

dXt = (µ(t,Xt)− σ(t,Xt)λt)dt+ σ(t,Xt) dW̃t (2.95)

where W̃t is a Brownian motion under Q. Compared to (2.94), the volatility term

is the same but the drift has changed; this is sometimes summarized as “change of

measure is change of drift.” The converse statement, “change of drift is change of

measure”, is true if the volatility σ(t,Xt), which is in general a matrix of size n× k,

is square and invertible.

The fact that the process Xt can also be described by (2.95) is convenient for

instance for computation of expressions such as EQ[f(XT )], where f is a given

function. All of the techniques discussed in this chapter can be used, starting from

the SDE (2.95). Alternatively, starting from λt one might also solve for θt from

(2.92), and then compute EQ[f(XT )] as EP [θT f(XT )], but that is usually more

work.

It will be seen in the coming chapters that the “Girsanov parameter” λt is

not only convenient from a mathematical point of view, but also has an important

financial meaning in cases where the change of measure is from “real-world measure”

to “pricing measure”. The popularity of writing financial models in continuous time,

rather than in discrete time, is explained to a large extent by the fact that there is

no Girsanov’s theorem in the discrete-time setting.

Example 2.7.2 The simplest choice for the process λt is to make it constant. In

this case, the SDE (2.92) becomes (for the case k = 1)

dθt = −λθt dWt, θ0 = 1

which is a special case of the stochastic differential equation for the geometric Brow-
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nian motion. From the general expression (2.45), it is seen that the solution is given

by

θt = exp(−1
2λ

2t− λWt). (2.96)

Suppose for instance that we want to compute EQXT for a process Xt that is given

by the Ornstein-Uhlenbeck SDE

dXt = −aXt dt+ σ dWt, X0 given

where a and σ are given numbers and where Wt is a Brownian motion under P .

First, let us try the method using the Radon-Nikodym process θt:

EQ[XT ] = EP [θTXT ] = e−
1
2
λ2TEP [e−λWTXT ].

We know from Section 2.6.2 that the random variable XT follows a normal distribu-

tion with mean and variance given, under the measure P , by (writing just E instead

of EP , and var instead of varP )

E[XT ] = e−aTX0, var(XT ) =
1− e−2aT

2a
σ2.

Introduce an auxiliary variable Y by

Y = XT −
cov(XT ,WT )

var(WT )
WT .

The two variables Y and WT are uncorrelated, and since they are jointly normal,

this means that they are independent. We have

E[e−λWTXT ] = E
[
e−λWT Y

]
+

cov(XT ,WT )

var(WT )
E[e−λWTWT ]. (2.97)

From the fact that Y and WT are independent, it follows that Y and e−λWT are also

independent, so that

E
[
e−λWT Y

]
= E

[
e−λWT

]
E[Y ] = e

1
2
λ2T e−aTX0.

Concerning the second term on the right in (2.97), note that, from the formula (2.66)

for the covariance of two stochastic integrals with deterministic integrands:

cov(XT ,WT ) = cov
(∫ T

0
e−a(T−t)σ dWt,

∫ T

0
dWt

)
=

∫ T

0
e−a(T−t)σ dt =

1− e−aT

a
σ.
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The expectation of XeλX , where X ∼ N(0, 1), can now be computed as follows:31

E[XeλX ] =
1√
2π

∫ ∞
−∞

xeλx−
1
2
x2
dx

=
λ√
2π

∫ ∞
−∞

eλx−
1
2
x2
dx− 1√

2π

∫ ∞
−∞

(λ− x)eλx−
1
2
x2
dx

=
λe

1
2
λ2

√
2π

∫ ∞
−∞

e
1
2

(x−λ)2
dx− 1√

2π
eλx−

1
2
x2
∣∣∣∞
−∞

= λe
1
2
λ2
.

This implies that

E[e−λWTWT ] = −λTe
1
2
λ2T .

Putting everything together, one finds

EQ[XT ] = e−
1
2
λ2T
[
e

1
2
λ2T e−aTX0 −

1− e−aT

aT
σ · λTe

1
2
λ2T
]

= e−aTX0 −
1− e−aT

aT
σλ = e−aT

(
X0 +

σλ

a

)
− σλ

a
. (2.98)

Now, let us do the computation with the aid of Girsanov’s theorem. According to

the theorem, we can write

dXt = −aXt dt+ σ dWt = (−aXt − σλ) dt+ σ dW̃t

where W̃t is a Brownian motion under Q. The equation above can also be written

as

d
(
Xt +

σλ

a

)
= −a

(
Xt +

σλ

a

)
dt+ σ dW̃t

which implies in particular that

EQ
[
XT +

σλ

a

]
= e−aT

(
X0 +

σλ

a

)
.

In other words,

EQ[XT ] = e−aT
(
X0 +

σλ

a

)
− σλ

a

just as we found from the method via the Radon-Nikodym process. It appears that,

in this case, Girsanov’s theorem provides a substantial shortcut with respect to the

Radon-Nikodym method.

31An alternative calculation is E[XeλX ] = d
dλ
E[eλX ] = λe

1
2
λ2

. This requires an argument (which
can be given) to motivate the interchange of expectation and differentiation.
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2.8 Exercises

1. Plot two sample paths of the Wiener process on the interval [0, 1], discretized

on a grid of equidistant time points. Use 100 steps.

2. Let Wt be a Wiener process. Show that cov(Wt1 ,Wt2) = min(t1, t2). For every

step in your reasoning, indicate which property of the Wiener process you use.

3. Let Wt be a Wiener process, and let α be a positive constant. Define a process

W̃t by

W̃t = α−1/2Wαt.

Show that W̃t is a Wiener process.

4. Let Wt be a Wiener process. Show that the process Xt defined by

Xt = 1
3W

3
t − tWt

is a martingale. Give a proof that does not use the Itô formula, and also one that

does. [Hint : For the proof without the Itô formula, expand ((Wt+h −Wt))
3 and

take conditional expectations given information up to time t.]

5. Let the process Xt be defined by Xt = tWt, where Wt is a Brownian motion.

Determine [X,X]t for t ≥ 0.

6. Let Wt be a Wiener process.

a. Using the Itô formula, derive a deterministic differential equation for the function

x(t) := E[cosWt]. Use the result to show that

E[cos aZ] = e−
1
2
a2

(Z ∼ N(0, 1)). (2.99)

b. Using the Itô formula, derive a deterministic differential equation that relates

the function yk(t) := E[Z2k
t ], for k ≥ 1, to the function yk−1(t). Use the result to

show that

E
[
Z2k

]
= (2k − 1)E

[
Z2k−2

]
(k ≥ 1, Z ∼ N(0, 1)). (2.100)

7. Let X be a standard normal variable, and let Y be the discrete variable that

takes the values 1 and −1 each with probability 1
2 . Assume that X and Y are

independent. Let Z be defined by Z = XY .

a. Prove that Z follows a standard normal distribution.

b. Prove that X + Z does not follow a normal distribution.
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8. a. Using Euler discretization, generate three approximate trajectories of the

solution of the stochastic differential equation

dXt = µXt dt+ σXt dWt (2.101)

on the interval [0, 20], with initial condition X0 = 1. Use the parameter values

µ = 0.08 and σ = 0.2, and set the time step ∆t equal to 0.1.

b. Generate 104 approximate sample paths under the same conditions. Plot the

average of the simulated values of Xt as a function of t. Also, plot the variance of

the simulated values of Xt as a function of t. Relate the results that you get to the

theory of geometric Brownian motion in Section 2.6.3.

9. Same questions as in Exc. 8 for the stochastic differential equation

dXt = µXt dt+ σ dWt (2.102)

with parameter values µ = −0.2 and σ = 0.5. Relate the results that you get to the

theory of linear SDEs in Section 2.6.3.

10. Same questions as in Exc. 8 for the stochastic differential equation

dXt = (αXt + β) dt+ σ
√
Xt dWt (2.103)

with parameter values α = −2, β = 1 and σ = 2.

11. The plots in Fig. 2.1 show sample paths of processes {Xt} described by the

following stochastic differential equations:

a. dXt = −0.9Xt dt+ 0.4 dWt

b. dXt = 0.8Xt dt+ 1.5Xt dWt

c. dXt = 0.8(1−
√
|Xt|) dt+ 0.2Xt dWt

d. dXt = 0.8 dt+ 0.1Xt dWt.

Find out which plot belongs probably to which process. Motivate your answer.

12. The plots in Fig. 2.2 show sample paths of processes {Xt} described by the

following stochastic differential equations:

a. dXt = −0.5(1− exp(1−Xt)) dt+ 0.2Xt dWt

b. dXt = 0.5Xt dt+ 0.1 dWt

c. dXt = 0.4Xt dt+ Xt dWt

d. dXt = 0.5 dt+ 0.1(1−Xt) dWt.

Find out which plot belongs probably to which process. Motivate your answer.
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Figure 2.1: Sample paths obtained from the four SDEs in Exc. 11
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Figure 2.2: Sample paths obtained from the four SDEs in Exc. 12
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13. Suppose that the stochastic processes Xt and Yt satisfy the stochastic differ-

ential equations

dXt = −1
2Xt dt− Yt dWt (2.104a)

dYt = −1
2Yt dt+Xt dWt (2.104b)

where Wt is Brownian motion.

a. Define a stochastic process Zt by Zt = X2
t + Y 2

t . Compute dZt.

b. Show that, for any constants a and b, the stochastic processes defined by

Xt = a cos(Wt + b), Yt = a sin(Wt + b)

form a solution of (2.104).

c. Apply Euler discretization to the equation system (2.104). Use the discretization

to generate a trajectory of the joint variables (Xt, Yt) on an interval of length 5 with

initial conditions X0 = 1 and Y0 = 0, and plot the trajectory in the (X,Y )-plane.

Use time step ∆t = 0.01. Does the plot satisfy the conditions that are suggested by

parts a. and b.? Repeat with ∆t = 0.001.

14. Suppose that the vector (W0,W1,W2, . . . ,WN ) has been generated as a sam-

pling of a trajectory of Brownian motion on a grid of N+1 equidistant points on the

interval [0, T ]. Define ∆t = T/N . Construct a new vector (Ŵ0, Ŵ1, Ŵ2, . . . , Ŵ2N )

as follows:

Ŵ2i = Wi for i = 0, . . . , N

Ŵ2i+1 = 1
2(Wi +Wi+1) + Vi for i = 0, . . . , N

where the Vi’s are drawn from a normal distribution with mean zero and variance
1
4∆t independently of each other and of the Wi’s. Show that this procedure is a valid

way to generate a sampling of Brownian motion on the interval [0, T ] with 2N steps.

(It will be general enough if you verify the following properties for the increments

Ŵ1− Ŵ0, Ŵ2− Ŵ1, and Ŵ3− Ŵ2: (i) they are jointly normally distributed, (ii) the

expected value of each increment is 0, (iii) the variance of each increment is 1
2∆t,

and (iv) the increments are pairwise independent.)

15. a. Define a random variable X by

X =

∫ 1

0
Wt dt

where Wt is a Wiener process. Show that X is normally distributed, and determine

the expectation and variance of X. [Hint : compute the differential of tWt, and
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use the telescope rule to write X as the difference of two stochastic integrals with

deterministic integrands.32]

b. Generalize to the case in which X is defined by X =
∫ T

0 Wt dt, with T > 0.

16. a. Generate a sample path of Brownian motion on the interval [0, 1], using

N = 106 steps. Extract from this sample path the corresponding path with time

steps of length 0.1. Compute the sum of absolute values of increments

9∑
j=0

|W0.1(j+1) −W0.1j | .

Repeat with time steps 0.01, 0.001, up to 10−6. Does the sequence of numbers that

you get in this way appear to converge to a finite value?

b. Repeat part a., but now compute the sum of squares of increments instead of

the sum of absolute values of increments. Again comment on whether the sequence

of numbers that you obtain in this way appears to converge to a finite value.

17. Generate two trajectories of Brownian motion on the time interval [0, 1], with

100 time steps. Plot both trajectories. Also plot the corresponding trajectories of

the cumulative sum of squared increments. Repeat the experiment with 105 time

steps rather than 100. Relate the results to the property (2.33).

18. a. Generate trajectories of two independent Brownian motions on the time in-

terval [0, 1], with 100 time steps. Plot the corresponding trajectory of the cumulative

sum of products of increments.

b. Repeat the experiment of part a., but now using 105 time steps rather than 100.

Compare the vertical scale in the plot that you obtain to the one you found in part

a. Relate the results to the property (2.56).

19. a. Using the definition (2.76), show that the solution of the vector differential

equation (dx/dt)(t) = Ax(t) with x(0) = x0 is given by x(t) = exp(At)x0. (In case

the matrix A is triangular, this can be used to compute exp(At) by solving a series

of scalar differential equations.)

b. Let A be a square matrix and let S be an invertible matrix of the same size.

Use the definition (2.76) to prove that exp(SAS−1t) = S exp(At)S−1, where S is

any invertible matrix of the same size as A. (Remember that any matrix can be

brought into triangular form by a similarity transformation. Part a. and part b. can

therefore be used in conjunction to find exp(At) for any square matrix A.)

32This technique follows the method of integration by parts from deterministic calculus.
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c. Using either the method of part a. or the definition (2.76) directly, derive that

exp

([
a1 0

0 a2

]
t

)
=

[
ea1t 0

0 ea2t

]

and that

exp

([
0 1

0 0

]
t

)
=

[
1 t

0 1

]
.

20. Generate 104 approximate trajectories of (2.101) on an interval of length 10,

with 100 steps. Use the parameter values µ = 0.01, σ = 0.2, and initial condition

X0 = 1. On the basis of these trajectories, generate plots of the following functions:

(i) the logarithm of the average of the values of Xt, as a function of time;

(ii) the average of the logarithms of the values of Xt, as a function of time.

Relate the results that you get to the theory of the geometric Brownian motion in

Section 2.6.1.

21. a. If St is given by the geometric Brownian motion model

dSt = µSt dt+ σSt dWt

where µ and σ are constants, what is the quadratic variation process of logSt?

b. Generate a trajectory of geometric Brownian motion St using Euler approxima-

tion, with parameter values µ = 0.08 and σ = 0.15, and compute the corresponding

cumulative sum of squared increments of logSt. Use T = 10 years and take 250

time steps per year. Plot both St and the cumulative sum of squared increments of

logSt as functions of time. Repeat the experiment twice. Does the cumulative sum

of squared increments match the quadratic variation process that you computed?

c. Take your favorite stock or stock index. Collect daily price data over a reasonably

long period (10 or more years) and plot the cumulative sum of squared increments

of log Y (t) where Y (t) represents the series of prices. Comment on the validity of

the Black-Scholes model for your data.

22. The purpose of this exercise is to take a look at the time discretization

error that is introduced by the Euler approximation method. To make it possible

to compute the error, a case is taken in which the exact solution is available.

a. Generate 105 trajectories of geometric Brownian motion (2.41) by means of the

Euler approximation method with 20 steps.33 Use X0 = 100, µ = 0.04, σ = 0.20,

33We need a sufficiently high number of trajectories to prevent that the discretization error will
be swamped by the Monte Carlo error.
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T = 10. Each of these trajectories corresponds to a particular trajectory of Brownian

motion. Also compute, for each trajectory, the exact value of XT according to

formula (2.45). In this way you obtain 105 realizations of the variable Xap
T that

is produced by the Euler approximation, and 105 corresponding realizations of the

exact random variable Xex
T . On the basis of these draws, compute estimates of

(i) the relative root mean squared error (RMSE), i.e.√
E[(Xap

T −X
ex
T )2]

E[Xex
T ]

(ii) the relative error in the second moment, i.e.∣∣E[(Xap
T )2]− E[(Xex

T )2]
∣∣

E[(Xex
T )2]

.

b. Repeat part a., but now using N steps where N is of the form N = 2k with

k = 1, . . . , 6. Generate a loglog plot of the relative RMSE against N , and do this

also for the relative error in the second moment.

c. In numerical analysis, an approximation method is said to have order of conver-

gence α if the approximation error behaves asymptotically as a constant times N−α,

where N is a measure of computation time (for instance the number of time steps

used, as in part b.). On the basis of the six data points gathered in part b., carry

out a linear regression of log RMSE with respect to logN and a vector of ones; in

other words, estimate the parameters β1 and β2 in the relation

log RMSE = β1 + β2 logN + ε.

Do this also for the error in the second moment. What would you say is the order

of convergence of the Euler approximation method in the two cases?34

d. To summarize, by how much should the step size be decreased to reduce the

discretization error by a factor 2 in the case of (i) RMSE, (ii) second moment?

23. Let the process Xt be given by the stochastic differential equation

dXt = µXt dt+ σXt dWt (2.105)

34In the context of the analysis of numerical methods for approximating random variables, the
order of convergence for RMSE is called the strong order of convergence, and the order of con-
vergence for quantities of the form E[f(X)] is called the weak order of convergence. We used the
function f(x) = x2 here, but typically one finds the same weak order of convergence for practically
any function f .
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where Wt is a Brownian motion under a given probability measure P . Consider the

process θt given by

dθt = −λθt dWt, θ0 = 1 (2.106)

which, by the solution formula for geometric Brownian motion, has the explicit

solution θt = exp(−1
2λ

2t − λWt). The process θt is a positive martingale under P ,

and therefore it can be used to define a change of measure from P to a new measure

Q. Suppose that X0 = 100, µ = 0.04, σ = 0.2, λ = 0.25, T = 5.

a. Indicate which of the following statements are true, and motivate your choices.

1. Under the new measure defined by the RN process θt, there is a shift of

probability weight on the outcomes of WT such that

(i) high (positive) values become more likely

(ii) low (negative) values become more likely

(iii) neither of the two above.

2. Judging from the differential equation (2.105), the sign of the correlation be-

tween XT and WT is

(i) positive

(ii) negative

(iii) zero.

3. On the basis of items 1. and 2., the following relation is expected to hold:

(i) EQXT > EPXT

(ii) EQXT < EPXT

(iii) EQXT = EPXT

(iv) no conclusion can be drawn.

b. The exact value of EQXT can be computed by the Radon-Nikodym formula

EQXT = EP [θTXT ], or alternatively by making use of Girsanov’s theorem. Com-

pute the value of EQXT , for any given T ≥ 0, by both methods. What is the value

of EPXT ?

c. An approximate value of EQXT can also be computed via simulation. Generate

1000 trajectories of the stochastic differential equation (2.105) with timestep ∆t =

0.1 on the interval [0, T ] with T = 5, and compute both the mean and the standard

deviation of the results to obtain an estimated 95% confidence interval for EQXT

(i) using the Radon-Nikodym formula and the exact value of θT
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(ii) using the Radon-Nikodym formula and the simulated value of θT (i.e. simulate

also (2.106))

(iii) using Girsanov’s theorem (i.e. simulate under Q).

d. Compare the confidence intervals obtained from the three methods above. Which

one gives the best results?

e. Repeat part c. with λ = 0.5 instead of λ = 0.25. Which method now gives the

smallest confidence interval?

24. a. Let Xt be a continuous martingale, and let α be a constant. Prove that

the process Yt defined by

Yt = exp(αXt − 1
2α

2[X,X]t)

is a martingale. You may assume that the boundedness conditions mentioned in

connection with Thm. 2.2.1 are fulfilled. [Hint : compute dYt.]

b. Let Xt be a martingale whose quadratic variation process is a deterministic

function of time; say

[X,X]t = g(t).

Prove that, for any t1 and t2 with t2 > t1, the distribution of the increment Xt2 −
Xt1 , conditional on information up to time t1, is normal with mean 0 and variance

g(t2) − g(t1). [Hint : use part a. together with the standard fact that a random

variable follows a normal distribution with mean 0 and variance σ2 if and only if its

moment generating function f(α) = E exp(αZ) satisfies f(α) = e
1
2
α2σ2

.]

c. Prove Lévy’s theorem:35 if Xt is a continuous martingale with [X,X]t = t, then

Xt is a Brownian motion.

25. This exercise provides a proof of Thm. 2.7.1 in the case in which only one

Brownian motion is involved. The proof for the case of a vector Brownian motion

is analogous. It will be assumed that the boundedness assumptions required for

the application of Thm. 2.2.1 are satisfied in all cases where needed. Consider the

stochastic differential equations

dW̃t = λt dt+ dWt, W̃0 = 0

and

dθt = −λtθt dWt, θ0 = 1.

35Paul Lévy (1886–1971), French mathematician. Lévy proved the theorem in the 1930s, before
the Itô calculus was invented.
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Under the assumptions mentioned, the process θt is a positive P -martingale and so

it defines a change of measure from the original measure P to a new measure Q.

a. Show that [W̃ , W̃ ]t = t. [Hint : use the calculus rules for quadratic (co)variation

in Subsection 2.5.1.]

b. Show that θtW̃t is a martingale with respect to P . [Hint : use the Itô calculus

and Thm. 2.2.1.]

c. Show that W̃t is a martingale with respect to Q. [Hint : use (2.90).]

d. Prove that W̃t is a Brownian motion with respect to Q. This is the claim of

Girsanov’s theorem. [Hint : use Exc. 24.]
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Chapter 3

Financial models

For the purposes of this textbook, a mathematical model for a financial market

consists of a specification of the joint evolution of prices of a number of given assets.

Further information that may be important in practice, such as trading restrictions,

are abstracted away by the assumption of perfect liquidity. This chapter provides

a generic way to set up a financial model, using Brownian motions as the source

of stochasticity. It is shown that key properties such as absence of arbitrage and

completeness can be verified effectively by means of linear algebra.

3.1 The generic state space model

3.1.1 Formulation of the model

We start from a model of the following form:

dXt = µX(t,Xt) dt+ σX(t,Xt) dWt

Yt = πY (t,Xt).
(3.1)

This is the general continuous-time state space model based on stochastic differential

equations driven by Brownian motion. The following notational conventions will be

in use. The symbol Wt denotes a vector-valued Brownian motion; unless mentioned

otherwise, Wt is a standard vector Brownian motion (i.e. there is no correlation

between the components of Wt). The symbol Xt is reserved for the state variable,

whereas the vector of variables of interest, which typically is a vector of asset prices,

is denoted by Yt. The letters k, n, and m are used to denote the dimensions of
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Wt, Xt, and Yt respectively.1 Then µX(t, x) is an n-vector-valued function of 1 + n

variables, σX(t, x) is an n×k-matrix-valued function of 1+n variables, and πY (t, x)

is an m-vector-valued function also of 1 + n variables.2

In the above model, all stochasticity derives from the driving process Wt. The

state Xt is a collection of variables that have been chosen in such a way that all

other relevant quantities can be expressed as functions of these variables. The vector

Yt denotes quantities of interest that depend on the state variables; in the models

of financial markets that will be considered below, Yt is always a vector of prices

of tradable assets. The components of the state vector may be themselves prices of

assets, but they can be other indicators as well, such as the 6-month Libor rate or

the temperature in Rio.

The state process is a Markovian process.3 Intuitively, this means that all infor-

mation from the past that is relevant to the future is summarized in the current value

of the state variable. In terms of the state, it only matters where you are, not how

you got there. In more formal terms, a stochastic process {Xt} is said to be a Markov

process if, for any sequence of time points t1 < t2 < · · · < tk < tk+1 < · · · < tk+l,

the conditional distribution of (Xtk+1
, . . . , Xtk+l

) given (Xt1 , . . . , Xtk) is the same as

the conditional distribution of (Xtk+1
, . . . , Xtk+l

) given only Xtk .

In the model (3.1), the process {Yt} may not be a Markovian process itself, but

we can say that all information from the past of {Yt} that is relevant to the future of

{Yt} is summarized in the current value of the state variable Xt. Not all stochastic

processes have the property that they can be described as instantaneous functions

of a finite-dimensional Markovian process (meaning that Yt is a function of t and

Xt only, Xt has finitely many components, and the process {Xt} is Markovian).

However, processes that do not have this property are in practice rarely used as

models for asset prices, since they are hard to simulate.

Part of the state space modeling philosophy is to assume that cashflows that are

generated by the contract at a given time T are determined completely by the value

of the state variable at that point in time. In practice it is always possible to ensure

that this property holds, by extending the number of state variables if necessary.

A theoretical example of a situation in which an infinity of state variables would

be needed is provided by the continuously-sampled sliding-window American-Asian

option, which is a contract that entitles the holder to a payoff that depends on

1Indeed, n is the number of state variables, k is the number of risk factors, and m refers to the
menu of investment opportunities.

2Shorthand notation will be used at a number of occasions below, to keep formulas more compact.
In this style of notation, arguments of functions and time subscripts are dropped, so that for instance
we write dX = µX dt+ σX dW . This should not lead to confusion. While in this style of notation
the second of line of (3.1) becomes Y = πY , it should be remembered that the notation Y refers to
(Yt)t, which is a stochastic process, whereas πY is a function from R1+n to Rm.

3Andrey Andreyevich Markov (1856–1922), Russian mathematician.
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the integral of the price of a given asset across the interval [τ − c, τ ], where c is a

constant and τ is the time, to be chosen by the holder, at which the contract pays

off. To make it possible to write the payoff as a function of the value of the state

variable at the time the payoff takes place, the state variable at time t must include

a representation of the full trajectory of the asset price from time t − c up to time

t. This information cannot be stored into finitely many variables. In such cases

one might think of extending the model (3.1) in such a way that the state variable

takes values in an infinite-dimensional space instead of Rn. Infinite-dimensional

state space models might also be formulated, for the purpose of generality. In this

book we stick to the finite-dimensional model (3.1).

In the model (3.1), it is assumed that the driving Brownian motions are inde-

pendent. In practice, however, it is often convenient to write a model of the form

(3.1) in which the components of the vector Wt are Brownian motions that may

be dependent. As discussed in Section 2.1, it is always possible to write a vector

Brownian motion Wt with possibly dependent entries in the form Wt = FŴt where

F is a suitable constant matrix and Ŵt is a standard Brownian motion. This means

that a model of the form

dXt = µX(t,Xt) dt+ σX(t,Xt) dWt (3.2)

can be written as

dXt = µX(t,Xt) dt+ σX(t,Xt)F dŴt

which in turn can be written as

dXt = µX(t,Xt) dt+ σ̂X(t,Xt) dŴt

where

σ̂X := σXF. (3.3)

In this way, any model of the form (3.1) in which the entries of the driving Wiener

process Wt are dependent can be replaced by a model of the same form in which

the driving process is a standard Brownian motion.

Therefore, to allow the driving process in (3.1) to be a nonstandard vector Brow-

nian motion does not make the model more general. The rule (3.3) can be used to

transform expressions based on independent Brownian motions to expressions based

on dependent Brownian motions. Specifically, if one starts with a model (3.2) in

which the process Wt is a vector Brownian motion with variance-covariance matrix

Σ, then all expressions below (which are derived under the assumption that Wt is

a standard vector Brownian motion) are still valid provided that all instances of

σX are replaced by σXF , where F is any matrix such that FF> = Σ, and W is
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accordingly replaced by Ŵ . Note that σXσ
>
X is replaced according to this rule by

σXFF
>σ>X = σXΣσ>X , which doesn’t depend on the particular choice of the ma-

trix F . Also note that the combination σX dW is replaced by σXF dŴ = σX dW

because W = FŴ ; so this combination actually doesn’t require adaptation.

The state process Xt may be restricted both in time and in values; for instance,

we may write our model only for a certain period, such as the interval [0, T ], and

some components of Xt may be constrained to take only positive values. The letter

D (for domain) indicates the collection of time-value pairs (t, x) taken into account

in our model; so D is a subset of R×Rn. Although in a rigorous model description

the domain D needs to be specified explicitly, the “right” choice of D is usually

obvious and it will often be omitted in model specifications below. The symbols µX

and σX denote functions from D to Rn and to Rn×k, respectively. They should be

such that the stochastic differential equation for the state variable

dXt = µX(t,Xt) dt+ σX(t,Xt) dWt (3.4)

has a unique solution in the domain D given an initial condition X0. The function

πY (t, x), which is used to express the asset price vector Yt in terms of the current

time and the current state, is defined on D and takes values in Rm. The following

is a standing assumption.

Assumption 3.1.1 In the model (3.1), the vector of pricing functions πY (t, x) is

nonzero for all (t, x) in the domain D.

In other words, it cannot happen that all asset prices are zero simultaneously. If

this assumption would not hold, the model would not admit any numéraires. It will

also always be assumed that the assets Yi are “pure” assets, net of all costs and

dividends; so the assets Yi are self-financing quantities.

From the model (3.1), one can obtain formulas for the drift and the volatility of

asset prices. On the basis of Itô’s lemma, it is possible to write

dYt = µY (t,Xt) dt+ σY (t,Xt) dWt (3.5)

where the functions µY (t, x) and σY (t, x) can be expressed in terms of the data in

(3.1). The function µY takes values in Rm, and σY is a matrix of size m×k. Writing

down explicit expressions in vector form for µY and σY is a bit unwieldy though;

therefore, let us write the equations in a componentwise way. Take a component of

Yt (i.e., a single asset), and let it be denoted by Ct.
4 By the multivariate Itô rule

4The letter C is used here to stand for “claim” or “contract”.
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(2.54), the drift function and the volatility function of C can be written as5

µC =
∂πC
∂t

+
∂πC
∂x

µX + 1
2 tr

∂2πC
∂x2

σXσ
>
X (3.6a)

σC =
∂πC
∂x

σX . (3.6b)

Shorthand notation is used here, in which the arguments t and x are suppressed.

The function µC(t, x) is of scalar type, whereas σC(t, x) has size 1×k. The gradient

vector ∂πC/∂x is defined as a row vector. The symbol ∂2πC/∂x
2 is used to denote

the Hessian6 matrix of the second partial derivatives of πC . The trace operator is

employed in (3.6a) as a device to avoid summation symbols. More explicitly, the

expression for the drift can be written as

µC =
∂πC
∂t

+

n∑
i=1

∂πC
∂xi

(µX)i + 1
2

n∑
i=1

n∑
j=1

∂2πC
∂xi∂xj

(σXσ
>
X)ij

=
∂πC
∂t

+

n∑
i=1

∂πC
∂xi

(µX)i + 1
2

n∑
i=1

n∑
j=1

k∑
`=1

∂2πC
∂xi∂xj

(σX)i`(σX)j` . (3.7)

In shorthand notation, not only arguments of functions but also subscripts t for

stochastic processes are omitted, so that for instance (3.5) can be written as dY =

µY dt + σY dW where it is understood that Y in dY and W in dW should have

subscripts t, and that µY and σY should be evaluated at (t,Xt).

The generic notation Xt has been used above for the state vector, but in applica-

tions the state variables often have particular meanings and associated letters with

mnemonic value are used, such as St for “stock value”, Bt for “bond value”, rt for

“interest rate”, and so on. In a model which has for instance S and B as state vari-

ables, we then write µX(t, S,B) instead of µX(t, x), still keeping the subscript X to

indicate that the symbol refers to the drift of the state variables. Correspondingly,

instead of expressions such as ∂πC/∂xi, we write ∂πC/∂S and so on. In a deviation

from mathematical purity that is motivated by shorthand notation (see footnote 2),

even ∂C/∂S will be used instead of ∂πC/∂S, in line with what is often seen in the

literature.

3.1.2 Portfolio strategies

In the context of a market model in state space form, a Markovian portfolio strategy

is defined as a function that determines a vector of asset holdings at time t just on

5The symbol “tr” denotes the trace operator, which assigns to a square matrix the sum of its
diagonal elements. The matrix on which the operator acts in (3.6a) is the product of the three
matrices that follow the tr symbol. A more explicit form is shown in (3.7).

6Otto Hesse (1811–1874), German mathematician.
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the basis of the current value of the state variable and the calendar time t. More

formally, a Markovian portfolio strategy is given by a function that is defined on the

domain D ⊂ R×Rn and that takes values in Rm. It would not be reasonable to allow

arbitrary functions as portfolio strategies, so some regularity conditions are usually

imposed. In particular, it will be required that portfolio processes have continuous

paths, as already anticipated in the discussion of stochastic calculus rules in the

previous chapter. The portfolio holdings process generated by a strategy function

φ is φt = φ(t,Xt).
7

From a financial point of view, a particularly important class of portfolio strate-

gies is formed by the self-financing strategies which define portfolios that satisfy

the budget constraint of no funds added and no funds extracted. Given a portfolio

holdings process φt, the value of the portfolio defined by this strategy at time t and

in state Xt is

Vt = φ>t Yt = φ>t πY (t,Xt). (3.8)

The process {Vt} is called the value process defined by φ. In case of a Marko-

vian portfolio strategy, the portfolio value can also be written as an instantaneous

function of the state variables: define a function πV by

πV (t, x) = φ>(t, x)πY (t, x) (3.9)

then

Vt = πV (t,Xt). (3.10)

The portfolio holdings process φ is self-financing if (cf. (1.8))

dVt = φ>t dYt (3.11)

or in more detail for Markovian strategies:

dVt = φ>(t,Xt) dYt = φ>(t,Xt)µY (t,Xt) dt+ φ>(t,Xt)σY (t,Xt) dWt. (3.12)

For a self-financing portfolio strategy {φt}, we have

VT = V0 +

∫ T

0
φ>t dYt (3.13)

by the telescope rule. This achieves the goal that was formulated in Section 1.3. It

7Note that the symbol φ is “overloaded” here; it is used both to denote an m-vector-valued
function of 1 + n variables and an m-vector-valued stochastic process. The distinction is made by
the use of either subscript or brackets.

72

OPEN PRESS TiU



Financial models The generic state space model

is the concept of the stochastic integral that allows us to write down this expression

even though the process {Yt} is not assumed to be of bounded variation.

The formula (3.13) is valid for self-financing strategies. As already discussed in

Section 1.2, it is possible to write a similar formula in which the self-financing con-

straint no longer appears, if asset prices are expressed relative to a numéraire. Any

asset whose price is always positive may serve as a numéraire. More generally, any

fixed linear combination of assets or, even more generally, any self-financing portfolio

of assets may be taken as a numéraire, as long as the price of the portfolio is always

positive. In the context of the state space model (3.1), a numéraire is therefore

defined by any m-vector function ν = ν(t, x)8 having th following properties:

(i) ν(t, x)>πY (t, x) > 0 for all (t, x) ∈ D;

(ii) the process Nt defined by Nt = ν(t,Xt)
>Yt satisfies dN = ν>dY .

The second condition expresses that the portfolio strategy ν should be self-financing;

the condition can be written in a more explicit form by means of Itô’s rule. Now,

consider a not necessarily self-financing trading strategy φt. Define a process Vt by

Vt
Nt

=
V0

N0
+

∫ t

0
φ>t d

Ys
Ns

(3.14)

and another process ψt by

ψt =
Vt − φ>Yt

Nt
. (3.15)

We then have

Vt = φ>t Yt + ψtNt = φ̂>t Yt

where φ̂t = φt +ψtνt, and νt := ν(t,Xt). Moreover, the strategy φ̂t is self-financing.

To verify that claim, note that by the product rule of stochastic calculus we can

write

dV = N d
V

N
+
V

N
dN + d[N,V/N ], dY = N d

Y

N
+
Y

N
dN + d[N,Y/N ].

Moreover, from (3.14) it follows that d(V/N) = φ>d(Y/N); by calculus rules (i)

and (vi) in Section 2.5.1, this implies in particular that d[N,V/N ] = φ>d[N,Y/N ].

From the fact that the numéraire is self-financing it follows that

dN = ν>dY = Nν>d
Y

N
+ ν>

Y

N
dN + ν>d[N,Y/N ] = Nν>d

Y

N
+dN + ν>d[N,Y/N ]

so that

Nν>d
Y

N
+ ν>d[N,Y/N ] = 0.

8The symbol used here is the Greek letter ν (nu).
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We can now compute

dV − φ̂>dY = N

(
d
V

N
− φ>d Y

N
− ψν>d Y

N

)
+

(
V

N
− φ̂> Y

N

)
dN

+ d[N,V/N ]− φ>d[N,Y/N ]− ψν>d[N,Y/N ]

= −ψ

(
Nν>d

Y

N
+ ν>d[N,Y/N ]

)
= 0.

Since Vt = φ̂>Yt and dVt = φ̂>dYt, it follows that indeed φ̂t is a self-financing

strategy, and Vt is the corresponding portfolio value process. The equation (3.14)

implies that the portfolio value at time T , relative to the value of the numéraire at

time T , is given by

VT
NT

=
V0

N0
+

∫ T

0
φ>t d

Yt
Nt

. (3.16)

This relates to (3.13) in the same way as (1.13) relates to (1.9). The formula (3.16)

is used below in conjunction with Thm. 2.2.2 (“you can’t beat the system”) to derive

a fundamental characterization of conditions under which a continuous-time market

is free of arbitrage: see Thm. 3.2.1.

The numéraire has been defined above in quite general terms, as a portfolio

that is constructed from the available assets in such a way that its value is always

positive. In practical applications, the numéraire is often simply a component of

the vector of assets. In that case, the function ν(t, x) is constant and equal to a

unit vector. The trading strategy φt can then be viewed as a strategy of trading

in the non-numéraire assets, and the process ψt adds the corresponding process of

holdings in the numéraire so that the trading strategy in all assets is self-financing.

3.1.3 Examples

Undoubtedly the most popular model in mathematical finance is the Black-Scholes9

model, which can be specified as follows:

dSt = µSt dt+ σSt dWt (3.17a)

dBt = rBt dt. (3.17b)

9Fischer Black (1938–1995), American economist. Myron S. Scholes (1941), Canadian/US
economist, Nobel prize 1997.
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Here, Wt is a Brownian motion, and the quantities µ, σ, and r are constants. The

symbol S refers to “stock”, and B refers to “bond”.10 The model can be solved

explicitly; St follows a geometric Brownian motion

St = S0 exp
(
(µ− 1

2σ
2)t+ σWt

)
and Bt behaves as an exponential function:

Bt = ertB0.

We can take S and B as state variables. At the same time S and B are also the

traded assets in the model, so that the BS model is an example of a model in which

the state variables are the same as the traded assets. In terms of the generic state

space model (3.1), the functions that specify the model are

µX(t, S,B) =

[
µS

rB

]
, σX(t, S,B) =

[
σS

0

]
, πY (t, S,B) =

[
S

B

]
. (3.18)

Variants of the Black-Scholes model can be created by replacing any of the three

constants µ, σ, and r by a stochastic process. For instance, one can replace the drift

coefficient µ by a variable µt that follows an Ornstein-Uhlenbeck process:

dSt = µtSt dt+ σSt dW1,t (3.19a)

dµt = a(b− µt) dt+ c dW2,t (3.19b)

dBt = rBt dt (3.19c)

where a, b, and c are constants. The parameter a should be positive to ensure that

µt is mean-reverting rather than mean-fleeing. The model (3.19) can be viewed as

an example of a business cycle model, because the variable µt can be thought of as

a business cycle indicator: “boom” when µt is larger than its long-term average b,

“bust” when it is below that value. For the purposes of such an interpretation, the

Brownian motions W1,t and W2,t are usually assumed to be correlated. The traded

assets in the model are S and B, and as state variables we can take S, B, and µ.

The model can be written in standard space form by defining

µX(t, S,B, µ) =

 µS

rB

a(b− µ)

 , σX(t, S,B, µ) =

σS 0

0 0

0 c

[1 0

ρ
√

1− ρ2

]
,

10The term “bond” is customary here, but, unlike what is usually the case for bonds, the asset
with price Bt does not have a time of maturity, The asset is more properly described as a savings
account, or as a money market account.
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πY (t, S,B, µ) =

[
S

B

]
. (3.20)

A criticism of the Black-Scholes model that is frequently expressed is that volatil-

ity in this model is constant, whereas in reality there are times in which markets

are more nervous, and prices are more volatile. One may attempt to capture such

changes in volatility by replacing the constant parameter σ in the BS model by a

stochastic process {σt}. For instance, the following model is sometimes used:

dSt = µSt dt+
√
νt St dW1,t (3.21a)

dBt = rBt dt (3.21b)

dνt = κ(θ − νt) dt+ ξ
√
νt dW2,t (3.21c)

where µ, r, κ, and ξ are constants, and the Brownian motions W1,t and W2,t are al-

lowed to be correlated. The constant ξ is called the volatility of volatility. The model

(3.21a–3.21c) for the evolution of stock prices is known as the Heston model after

Steven Heston who proposed it in 1993. The standard state space representation

can be written down with

µX(t, S,B, ν) =

 µS

rB

κ(θ − ν)

 , σX(t, S,B, ν) =


√
ν S 0

0 0

0 ξ
√
ν

[1 0

ρ
√

1− ρ2

]
,

πY (t, S,B, ν) =

[
S

B

]
. (3.22)

The Black-Scholes model also assumes that the interest rate is constant, and in

fact that the same discount rate r applies to all maturities. In practice, the three-

month interest rate may well be different from the one-year rate, which again may

be different from the ten-year rate; moreover, all of these rates tend to change in

time. Modeling of interest rates will be discussed more extensively in Chapter 5 of

this book. A simple way to introduce variable interest rates in the BS model is as

follows:

dSt = µSt dt+ σSt dW1,t (3.23a)

dBt = rtBt dt (3.23b)

drt = a(b− rt) dt+ c dW2,t (3.23c)

where µ, a, b, and c are constants, and where W1,t and W2,t are Brownian mo-

tions. The two Brownian motions could be correlated. The model can be written
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in standard state space form by defining

µX(t, S,B, r) =

 µS

rB

a(b− r)

 , σX(t, S,B, r) =

σS 0

0 0

0 c

[1 0

ρ
√

1− ρ2

]
,

πY (t, S,B, r) =

[
S

B

]
. (3.24)

Given the equation (3.23b), the variable rt should be interpreted as the interest

that is paid on short-maturity loans (the short rate). The model (3.23c) for the

evolution of the short rate is called the Vasicek model.11 The model (3.23) as a

whole is sometimes referred to as the Black-Scholes-Vasicek model.

Many more models for financial markets have been developed. For instance,

such models may include prices of several stocks driven by different (but corre-

lated) Brownian motions, or they may attempt to describe the behavior of prices

of commodities such as oil or gold. There are also the term structure models which

concentrate on the important financial products that depend on the evolution of

interest rates. Most of the models used in practice are driven by Brownian mo-

tion, although sometimes other sources of stochasticity (such as for instance jump

processes) are used as well. Typically, models can be written in the form (3.1).

Starting from the state space model (3.1) we therefore reach a level of generality

that is sufficient for most practical purposes. The model is specified in terms of

the three vector/matrix functions µX , σX , and πY , and so it must be possible to

discuss all notions associated to financial models, in particular absence of arbitrage

and completeness, in terms of these three functions. This is what will be done in

the sections below.

3.2 Absence of arbitrage

3.2.1 The fundamental theorem of asset pricing

An arbitrage is a self-financing trading strategy which, starting with zero initial

portfolio value, creates a portfolio value at a later time that is nonnegative with

probability 1 and positive with positive probability.12 In other words, an arbitrage

strategy is one that starts with nothing, never makes a loss, and realizes a gain at

11Oldrich A. Vasicek (1942), Czech/US mathematician. Vasicek proposed the model that is
named after him in 1977.

12The term “arbitration” is used in historical texts in English to describe the process of choosing
among various ways to settle a payment in a foreign currency, either directly or via a third currency.
The equivalent French term “arbitrage” has come in use to refer to the possibility of making a
riskless profit that arises when the difference between the pathways is large enough, and the more
expensive one can be reversed.
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least in some cases. Models of financial markets are usually constructed in such a

way that they do not allow arbitrage, at least by strategies that are “admissible” in

the sense that they satisfy certain reasonable conditions. For instance, a condition

that can be imposed is that there is some level of loss beyond which trading strate-

gies should not be allowed to continue; this requirement excludes versions of the

“doubling strategy”.13 A model in which there are no arbitrage strategies that are

admissible is said to be free of arbitrage. The fundamental theorem of asset pricing

gives conditions under which a given model is arbitrage-free. The theorem can be

stated as follows.

Theorem 3.2.1 The market as specified by an objective (“real-world”) probability

measure P and a collection of asset price processes {Yi}t (i = 1, . . . ,m) is free of

arbitrage if and only if, given any numéraire N , there is a measure QN (depending

on N) which is equivalent14 to the objective measure P, and which is such that all

relative price processes (Yi)t/Nt are QN -martingales.

Any measure QN that has the properties mentioned in the theorem is called an

equivalent martingale measure; “equivalent” because QN is equivalent to P, and

“martingale” because relative asset prices are martingales under QN .

To see that the condition stated in the theorem indeed precludes the construction

of admissible arbitrage strategies, note that, as a consequence of the relation (3.16)

and Thm. 2.2.1, the assumption that all relative price processes (Yi)t/Nt are QN -

martingales implies that also Vt/Nt is a QN -martingale, where Vt is the value of

any self-financing portfolio that can be constructed from the basic assets (Yi)t. Let

Vt denote the value of such a portfolio, with V0 = 0, and let Nt denote the value

of a chosen numéraire. The strategy that gives rise to the portfolio value Vt would

constitute an arbitrage if at some time T the conditions

P(VT ≥ 0) = 1, P(VT > 0) > 0

would hold. Because the measure QN is equivalent to P, and because the value of

the numéraire NT is certainly positive, these conditions imply

QN (VT /NT ≥ 0) = 1, QN (VT /NT > 0) > 0.

13In a coin tossing game, the doubling strategy is to wager one euro and to double the stakes
after each lost round; playing is stopped as soon as a win occurs. In a game with finitely many
rounds, this strategy produces a large probability of a small gain, and a small probability of a large
loss. In a continuous-time setting, one can play versions of this game with arbitrarily many rounds
(assuming that trading can be done arbitrarily fast), even on a finite time interval. An arbitrage
opportunity would arise if there would be no limit on the amount that can be bet.

14Recall that two probability measures P and Q are said to be equivalent if any event that
has positive P -probability also has positive Q-probability, and vice versa. The equivalence in the
theorem holds on intervals of arbitrary but finite length.
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However, this state of affairs is excluded by the martingale property which implies,

by Thm. 2.2.2, that

EQN VT
NT

=
V0

N0
= 0

since V0 = 0.

The converse statement, that an admissible arbitrage can be constructed when

the condition of the theorem is not met, is more difficult to show. A sketch of

an argument can be given as follows. Choose a numéraire. For a fixed time T ,

which may be taken as large as desired, consider the set of all random variables

that can be constructed as final portfolio values, relative to chosen numéraire, of

admissible portfolio strategies that start from portfolio value 0. Let this set be

denoted by H. Since strategies can be added and multiplied by constants, H is in

fact a linear subspace. By the assumption of absence of arbitrage, H intersects the

set of nonnegative random variables only in the point 0. Geometric intuition then

suggests that it is possible to find a linear functional (i.e. a mapping of the space

of random variables to the real line) such that its nullspace contains H, and the set

of nonzero nonnegative random variables is mapped to the positive part of the real

line. The latter condition ensures that this linear functional, after proper scaling,

can be written as expectation under a measure Q that is equivalent to the real-world

measure P. One then has the property

EQ
∫ T

0
φ>t d

Yt
Nt

= 0

for all admissible strategies. By a converse of Thm. 2.2.2, it follows that the pro-

cesses Yt/Nt are martingales under Q.15 As emphasized, this is only a sketch of

a proof; in particular, one needs to be careful when using geometric intuition in

infinite-dimensional spaces. A version of the argument in the very simplest case is

incorporated in Exc. 3.7.1.

The importance of the fundamental theorem of asset pricing is first of all that

it gives a criterion for absence of arbitrage, which is a basic property for models of

financial markets. But the theorem can also be used for pricing purposes. Suppose

that, in an arbitrage-free market, an asset is introduced which is defined in terms of

the existing assets; for instance it might be an option written on one of the assets

in the model. Then the price of the new asset is said to be market-consistent if

the market with this asset included is still free of arbitrage.16 Denote the price of

the new asset at time t by Ct. By the fundamental theorem of asset pricing, the

price is market-consistent if and only if, for at least one of the equivalent martingale

15Here it is essential that φt is not subject to the self-financing constraint.

16The terms “fair price” and “arbitrage-free price” are also used instead of “market-consistent
price”.
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measures QN that the given model allows, we have

Ct
Nt

= EQN
t

CT
NT

(3.25)

for any t and T with t < T . When the EMM is determined uniquely (this is the

case of a “complete market”), then the above formula determines the price at time

t uniquely in terms of the value that the asset may have at time T . For instance,

in the case of a European option, the time T could be the time of maturity of the

option, so that the value of the derivative at that time is given as a function of the

value of the underlying asset.

The formula (3.25) is sometimes referred to as the risk-neutral pricing formula.

To emphasize the role of the numéraire, the term numéraire dependent pricing for-

mula (NDPF) will be used in this book.

3.2.2 Constructing arbitrage-free models

The formulation of the fundamental theorem of asset pricing in Thm. 3.2.1 is quite

general and does not relate to a specific representation of the asset price processes Yt.

On the other hand, the theorem does not provide a concrete procedure to verify, for

any given model of a financial market, whether the model is free of arbitrage. More

tangible criteria for absence of arbitrage can be developed if we assume that the

asset price processes are given in terms of a standard state space model (3.1). The

following theorem presents a criterion for absence of arbitrage that can be verified

by direct computation.

Theorem 3.2.2 Let N be a numéraire for the model (3.1). Define µY/N =

µY/N (t, x) and σY/N = σY/N (t, x) by

d(Y/N) = µY/N dt+ σY/N dW. (3.26)

The model (3.1) allows no arbitrage if and only if there exists a k-vector function

λN = λN (t, x) such that

µY/N = σY/NλN . (3.27)

Proof The condition for absence of arbitrage is that the discounted asset price pro-

cess Yt/Nt should be a martingale with respect to a measure that is equivalent to the

original measure under which the model (3.1) has been formulated (the “real-world”

measure). By Girsanov’s theorem, in a “Markovian” version, this comes down to
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the existence of a function λN such that when W̃t is defned by the prescription

dW̃t = λN (t,Xt) dt+ dWt (3.28)

together with the initial condition W̃0 = 0, then the discounted price process satisfies

d(Y/N) = σY/N dW̃ . (3.29)

From (3.28) and (3.26), we have

d(Y/N) = (µY/N − σY/NλN ) dt+ σY/N dW̃

and so the condition to be satisfied by the function λN is given by (3.27). �

Note that µY/N (t, x) is an m-vector, whereas σY/N (t, x) is an m×k-matrix. The

condition (3.27) may be expressed by the requirement that, for every (t, x) ∈ D,

the vector µY/N (t, x) should belong to the subspace of Rm that is generated by the

columns of the matrix σY/N (t, x). This can be verified by the techniques of linear

algebra.

Suppose that (3.29) does not hold. Then, for some (t0, x0) ∈ D, the vector

µY/N (t0, x0) is not in the span of the columns of σY/N (t0, x0). It follows that there

exists a vector φ0 such that φ>0 σY/N = 0 while φ>0 µY/N 6= 0; for instance one can

choose φ0 such that φ>0 µY/N = 1. The portfolio with composition φ0 has at time t0

and in state x0 a positive drift and zero volatility. While that fact as such cannot be

viewed as an arbitrage since the property of zero volatility holds only for an instant,

some intuitive support for the condition (3.26) does emerge from it.

As an example, let us consider the standard Black-Scholes model, with the bond

as a numéraire. Computation using Itô’s formula shows that

µY/B =

[
(µ− r)S/B

0

]
, σY/B =

[
σS/B

0

]
.

The equation (3.27) in this case becomes[
(µ− r)S/B

0

]
= σY/BλB =

[
σS/B

0

]
λB

where λB is allowed be a function of t, S, and B. If σ 6= 0, there is a unique solution

which is in fact constant:

λB =
µ− r
σ

. (3.30)

If σ = 0 and µ 6= r, then there is no solution and so in this case the market allows

arbitrage. It is not difficult to see how to construct the arbitrage: when σ = 0, the
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stock S is really a bond and when µ 6= r it carries a different interest rate than the

bond B. Therefore a riskless profit can be made, starting from an initial portfolio

value of zero, by borrowing money at the lower rate and lending it at the higher

rate. If σ = 0 and µ = r, there are many solutions, and so in this case there is no

arbitrage.

It can be a bit inconvenient that the criterion (3.27) requires computation of

the drift and volatility of the vector asset price process relative to the numéraire.

Another criterion, which is stated directly in terms of the drift and the volatility of

the asset price process itself, is given in the theorem below.

Theorem 3.2.3 The model (3.1) admits no arbitrage if and only if there exist a

k-vector valued function λ = λ(t, x) and a scalar function r = r(t, x) such that

µY − rπY = σY λ. (3.31)

In order to derive this criterion from (3.27), we need a general formula for the

drift and volatility of a quotient of two stochastic process in terms of the drifts

and volatilities of the processes themselves (the “stochastic quotient rule”). Such a

formula is given in the following lemma, which is a straightforward application of

the Itô rule.

Lemma 3.2.4 Let {Yt} be a vector-valued stochastic process that satisfies the

stochastic differential equation

dY = µY dt+ σY dW

and let {Nt} be a scalar-valued process that is such that Nt > 0 for all t, and that

satisfies

dNt = µN dt+ σN dW. (3.32)

Here, Wt is a standard vector Brownian motion, and µY , σY , µN , and σN are

processes adapted to W . We then have d(Y/N) = µY/N dt+ σY/N dW with

µY/N =
1

π2
N

(µY πN − πY µN )− σY/N
σ>N
πN

(3.33)

σY/N =
1

π2
N

(σY πN − πY σN ) (3.34)

Proof From Itô’s formula, we have

d(Y/N) =
1

πN
dY − πY

π2
N

dN − 1

π2
N

d[Y,N ] +
πY
π3
N

d[N,N ]
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=
1

πN
(µY dt+ σY dW )− πY

π2
N

(µN dt+ σN dW )

− 1

π2
N

σY σ
>
N dt+

πY
π3
N

σNσ
>
N dt.

The formulas (3.34) and (3.33) follow from this by collecting the dt and dW terms.

�

Another lemma that will be needed is formulated below. The lemma states that,

if the asset prices in a particular model satisfy the equation (3.31), then the value of

any self-financing portfolio formed from these assets also satisfies the same equation.

Lemma 3.2.5 Consider the model (3.1), and suppose that the equation (3.31) holds

for some functions r(t, x) and λ(t, x). Let the m-vector function φ(t, x) indicate a

self-financing strategy in the assets Y , and let the associated value process be denoted

by Vt := φ(t,Xt)
>Yt. Define the functions µV = µV (t, x) and σV = σV (t, x) by

dV = µV dt+ σV dW (3.35)

and define the function πV = πV (t, x) by πV = φ>πY . Under these conditions, the

following relation holds:

µV = rπV + σV λ. (3.36)

Proof The requirement that the strategy φ should be self-financing means that

dV = φ>dY . It then follows from (3.35) that µV = φ>µY and σV = φ>σY . The

relation (3.36) now follows upon premultiplying both sides of the equation (3.31) by

φ>. �

We can now proceed to the proof of the theorem.

Proof (of Thm. 3.2.3). Let Nt = ν(t,Xt)
>Yt be a numéraire; in particular, this

means that the strategy ν(t,Xt) is self-financing, so that dN = ν>dY . Define

µN (t, x) and σN (t, x) as in (3.32). We know from Thm. 3.27 that absence of arbitrage

holds if and only if for each (t, x) ∈ D, the m-vector µY/N (t, x) belongs to the span

of the columns of the m× k-matrix σY/N (t, x). From the expressions in (3.34) and

(3.33), we see that this happens if and only if17

µY πN − πY µN ∈ colsp(σY πN − πY σN ).

This is equivalent to the existence of a k-vector function λ = λ(t, x) such that

µY πN − πY µN = (σY πN − πY σN )λ. (3.37)

17The notation “colspA” is used to denote the linear subspace spanned by the columns of the
matrix A.
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The above equation can be rewritten as

µY =
µN − σNλ

πN
πY + σY λ. (3.38)

Clearly, (3.31) is satisfied when (3.38) holds, that is, when there is no arbitrage.

Suppose conversely that (3.31) is given; we then have to show that (3.38) holds.

From Lemma 3.2.5, we have µN = rπN + σNλ and so

r =
µN − σNλ

πN
.

It follows that (3.38) is satisfied.18 �

The derivation as given here shows that the short rate can be defined in any

arbitrage-free financial model. Indeed the short rate is a fundamental theoretical

notion; it may be described as the instantaneous depreciation rate of capital, or

more briefly as the “price of time”. One can define an associated process called the

money market account by the stochastic differential equation

dMt = rMt dt (3.39)

together with an initial condition, for instance M0 = 1. This process clearly satisfies

the no-arbitrage equation µM = rπM + σMλ, since σM = 0 and µM = rπM . Given

a positive initial condition, the money market account is always positive. It is often

used as a numéraire.

As an example, we can apply the criterion (3.31) to the standard Black-Scholes

model. A notational problem arises here, because the letter r is used both in the for-

mulation of the BS model and in Thm. 3.2.3. Let us temporarily replace the notation

r(t, x) in Thm. 3.2.3 by ρ(t, x). The criterion (3.31) then calls for an investigation

of the solvability of the equation[
µS

rB

]
−

[
S

B

]
ρ =

[
σS

0

]
λ.

As it should be, the conditions for absence of arbitrage derived from this equation

are the same as the conditions already derived above on the basis of the criterion

(3.27). In particular, when σ 6= 0, we obtain unique solutions given by ρ = r and

λ =
µ− r
σ

. (3.40)

18Note the role of the information that the numéraire is the value of a self-financing portfolio,
i.e. it is an asset price process, rather than just any positive process.
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This agrees with the expression for λB in (3.30), as should be the case since the

bond has no volatility.

The quantity λ is often called the “price of risk”; the expression above gives

its value in the BS model, as a function of the parameters of the model. This

terminology has to be handled with care however; it may easily be misunderstood.

A discussion is given in Section 3.6 below.

3.2.3 An alternative formulation

The no-arbitrage condition (3.31) can be rewritten in a mathematically equivalent

form which allows an interpretation of its own. The rewriting is based on a fact

from linear algebra, namely that the requirement that a given vector x should be

in the column span of a given matrix A can be expressed not only by the condition

that x = Ay for some y, but also by the condition that z>x = 0 for all vectors z

such that z>A = 0.

Theorem 3.2.6 The model (3.1) admits no arbitrage if and only if there exists a

scalar-valued function r(t, x) such that for all (t, x) ∈ D and for all z ∈ Rm the

following holds:

if z>σY (t, x) = 0, then z>µY (t, x) = r(t, x)z>πY (t, x). (3.41)

Proof If the model (3.1) is arbitrage-free, then by Thm. 3.2.3 there exist functions

λ(t, x) and r(t, x) such that (3.31) holds. It follows immediately that the statement

in the theorem above is true. Conversely, let r(t, x) be as in the theorem above.

Suppose that for a certain t and x the vector µY (t, x)− r(t, x)πY (t, x) would not be

in the column space of the matrix σY (t, x); then there would be an m-vector z such

that z>(µY (t, x)− r(t, x)πY (t, x)) = 1 while z>σY (t, x) = 0. This would contradict

the condition of the theorem. Therefore we can conclude that for all (t, x) there must

be a k-vector λ(t, x) such that µY (t, x) − r(t, x)πY (t, x) = σY (t, x)λ(t, x). Absence

of arbitrage follows by Thm. 3.2.3. �

The statement in Thm. 3.2.6 may be expressed as: “under all market conditions,

any instantaneously riskless combination of assets earns the same instantaneous

return.” In particular, in a model in which a constant interest rate r is assumed,

the theorem above states that arbitrage is excluded if and only if any instantaneously

riskless combination of assets earns the riskless interest rate r. 19 The assets that are

involved in such a combination could be the basic assets that appear in the model

formulation, but they can also include derivatives written on these assets.

19In particular, this justifies the “alternative derivation” in the 1973 paper by Black and Scholes
(see Section 1.1).
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3.3 Completeness and replication

3.3.1 Completeness

Under the assumption that absence of arbitrage holds, we say that a model is com-

plete if the equivalent martingale measure under which discounted price processes

are martingales is determined uniquely for any given numéraire. In other words,

the model (3.1) is complete if the function λ is determined uniquely by the equation

(3.31). In a complete market, prices are determined uniquely. Moreover, as shown

below, in a complete market it is possible to construct portfolio strategies that will

produce any payoff that can be defined at a future time T as a function of variables

whose value will only be known at that time, given only that the initial budget is

at the appropriate level. The term “completeness” actually derives from this latter

property.

The uniqueness condition leads to the following test for completeness. Recall

that a matrix A is said to be of full column rank if the rank of A is equal to

the number of columns of A (in other words, if the columns of A are independent

vectors). If the linear equation y = Ax has a solution, then this solution is unique

if and only if the matrix A has full column rank.

Theorem 3.3.1 Assume that the model (3.1) is arbitrage-free. The model is com-

plete if and only if the matrix [σY (t, x) πY (t, x)], of size m×(k+1), has full column

rank for all (t, x) ∈ D.

Proof If the condition of the theorem holds, then both r and λ in (3.31) are uniquely

determined and so the model is complete. Suppose now that the condition of the

theorem does not hold; then for some (t, x) either σY (t, x) has dependent columns,

or there exists a k-vector η such that πY (t, x) = σY (t, x)η. In the first case, λ(t, x)

is clearly not uniquely determined. In the second case, if (λ, r) is a solution to the

equation µY (t, x) = rπY (t, x) + σY (t, x)λ, then so is (λ+ cη, r− c) for any constant

c; consequently, also in this case the vector λ is not uniquely determined. (Note

that η 6= 0, because otherwise πY (t, x) = 0, which would violate Assumption 3.1.1.)

In both cases it follows (via Girsanov’s theorem) that the equivalent martingale

measure is not unique and hence that the model is not complete. �

Since a matrix can only have full column rank if the number of rows is at least as

large as the number of columns, it follows that a necessary condition for completeness

of the model (3.1) is that m ≥ k + 1, that is to say, the number of assets in the

model should be at least one larger than the number of sources of uncertainty.
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3.3.2 Option pricing

In a complete and arbitrage-free market, there is by definition for any given

numéraire exactly one equivalent martingale measure. As a consequence, prices

of contracts that can be defined within the given market are determined uniquely

by the numéraire-dependent pricing formula (3.25). The formula will provide the

same answer regardless which numéraire is chosen; consequently, in any specific pric-

ing problem one can choose a numéraire that is suitable for the problem at hand,

much in the same way as a suitable coordinate system may be chosen, say, to solve

a specific problem in physics. Examples of the use of different numéraires are shown

in Chapter 4 and Chapter 5 below.

The numéraire-dependent pricing formula (3.25) is a direct consequence of the

fundamental theorem of asset pricing and holds for any contract and for any times

t and T such that T ≥ t. In applications to option pricing, the time T is typically

chosen to be the time of expiration of the option. The payoff of the option may be

supposed to be given as a function of the state variable at time T , where if necessary

the state variables can be extended (cf. Exc. 4.5.5 for an example of state variable

extension). In the generic state space model, the price of numéraire asset at time

t is given as well as a function of the state variables at time t; say Nt = πN (t,Xt).

For an option that expires at time T with value CT = F (XT ), the NDPF then takes

the following specific form:

Ct = πN (t,Xt)E
QN
t

[
F (XT )

πN (T,XT )

]
. (3.42)

When the distribution of XT under the measure QN is known explicitly, the expec-

tation in the formula above can be computed as an integral which in some cases

may be worked out analytically. Alternatively, computation of the option price as

a function of time and of the state variables can be based on the property that the

equation (3.31) must remain satisfied when Ct is included as an additional entry in

the vector Yt of asset prices. This implies that the function πC(t, x) satisfies the

equation

µC − rπC = σCλ (3.43a)

together with the boundary condition

πC(T, x) = F (x). (3.43b)

For given r and λ, the equation (3.43a) can be written out in full as a partial

differential equation for πC (see (3.6)). The resulting PDE is a generalized form of

the Black-Scholes equation. Numerical methods for option pricing can be based on

(3.43) as well as on (3.42), as discussed in Chapter 6 and Chapter 7 respectively.
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The standard example of option pricing is the valuation of a call option within

the standard Black-Scholes model. It has already been noted above (Section 3.2.2)

that the BS model (with nonzero volatility) is free of arbitrage and that the price

of risk is determined uniquely within the model, so that completeness holds as well.

The standard numéraire with the BS model is the bond, whose price Bt at time t

in the BS model is simply given by Bt = B0e
rt. The payoff of a call option is given

by20

F (ST ) = max(ST −K, 0). (3.44)

To apply the pricing formula (3.42), it suffices to know the distribution of ST under

the equivalent martingale measure QB that corresponds to taking the bond as the

numéraire. An application of Itô’s formula shows that

d
S

B
= (µ− r) S

B
dt+ σ

S

B
dW. (3.45)

Girsanov’s theorem implies that changing to the equivalent martingale measure

associated to the bond numéraire will modify the drift term in the above equation

but not the volatility term. Moreover, since the process St/Bt must be a martingale

under this measure, the drift term should vanish. In other words,

d
St
Bt

= σ
St
Bt

dW̃t (3.46)

where W̃t is a Brownian motion under QB (cf. 3.29). This shows that the process

St/Bt is a geometric Brownian motion under QB, just like it is under the real-world

measure, be it with different parameters. From the explicit solution formula for the

GBM (2.45) it follows that

ST
BT

=
S0

B0
exp(−1

2σ
2T + σW̃T ). (3.47)

Since W̃ is a Brownian motion under QB, the distribution of W̃T under Q is normal

with expectation 0 and variance T . Therefore the distribution of ST under Q can

be described by

ST = erTS0 exp
(
−1

2σ
2T + σ

√
T Z

)
, Z ∼ N(0, 1). (3.48)

On the basis of (3.42), this leads to the following expression for the price of the

20A call option is a contract that gives the holder the right, but not the obligation, to purchase
one unit of the underlying asset at the time of maturity T , by paying the strike price K which is
already fixed at the initiation of the contract (time 0). If the price at time t of one unit of the
underlying asset is denoted by St, then the value of the option contract at time T is therefore
max(ST −K, 0). This is called the “payoff”.
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option at time t:21

C0 =
e−rT√

2π

∫ ∞
−∞

max
(
erTSt exp(−1

2σ
2T + σ

√
T z
)
−K, 0

)
exp(−1

2z
2) dz. (3.49)

The integral can be worked out explicitly; cf. Section 4.4.2 below for details. The

result is as follows:

C0 = S0Φ(d1)− e−rTKΦ(d2) (3.50a)

where Φ is the cumulative normal distribution function and the numbers d1 and d2

are given by

d1 =
log(S0/K) + (r + 1

2σ
2)T

σ
√
T

, d2 =
log(S0/K) + (r − 1

2σ
2)T

σ
√
T

. (3.50b)

This is the celebrated Black-Scholes formula for the price of a call option. A col-

lection of alternative derivations of the same formula is contained in Section 4.4.2.

Since the parameter T represents time to maturity in the derivation above,22 the

price of the option at a general time t < T is given by the same formula, with 0

replaced by t and T by T − t. The pricing function πC(t, S) which gives the option

price as a function of the time t and the state variable S can therefore be written

as

πC(t, S) = SΦ(d1(t, S))− e−r(T−t)KΦ(d2(t, S)) (3.51a)

where the functions d1(t, S) and d2(t, S) are given by

d1(t, S) =
log(S/K) + (r + 1

2σ
2)(T − t)

σ
√
T − t

, d2(t, S) = d1(t, S)− σ
√
T − t. (3.51b)

In the case of a call option in the Black-Scholes model, the partial differential equa-

tion (3.43) becomes (writing just π instead of πC)

∂π

∂t
+ rS

∂π

∂S
+ 1

2σ
2S2 ∂

2π

∂S2
− rπ = 0, π(T, S) = max(K − S, 0). (3.52)

It can be verified (Exc. 3.7.3) that the function πC(t, S) defined in (3.51) is indeed

a solution of (3.52).

3.3.3 Replication

As already mentioned, an important property of complete markets is that they allow

replication. This is formulated in the next theorem. In the proof, again use is made

21Recall that if X is a random variable with density φX on an interval (a, b), then the expectation

of a function of X is given by E[f(X)] =
∫ b
a
f(x)φX(x) dx, assuming the integral exists.

22When current time is 0, the time to maturity is the same as the time of maturity, but in general
the two are different.
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of a fact from linear algebra: if a matrix A has full column rank, then the equation

y = x>A, where y is given, always has a solution x.

Theorem 3.3.2 Suppose that the model (3.1) is arbitrage-free and complete, and

let r and λ be the solutions of (3.31). Let πC = πC(t, x) be a real-valued function

that satisfies the equation µC = rπC+σCλ, where µC and σC are defined as in (3.6).

Then there exists a self-financing strategy φ = φ(t, x) such that πC = φ>πY .

Proof Because the matrix [σY (t, x) πY (t, x)] has full column rank for all (t, x) ∈ D,

there exists a vector-valued function φ(t, x) such that

[σC(t, x) πC(t, x)] = φ>(t, x)[σY (t, x) πY (t, x)]. (3.53)

From the assumption that µC = rπC + σCλ, it follows that

µC = [σC πC ]

[
λ

r

]
= φ>[σY πY ]

[
λ

r

]
= φ>µY . (3.54)

Let Vt = φ>t Yt = φ>(t,Xt)πY (t,Xt) = πC(t,Xt) denote the value of the portfolio

that is formed from the assets in Y by using the portfolio weights φ. Then

dV = µC dt+ σC dW =

= φ>(µY dt+ σY dW ) = φ>dY

which shows that the portfolio with weights φ is self-financing. �

Lemma 3.2.5 states that, under the assumption of absence of arbitrage, values

of self-financing portfolios are solutions of the Black-Scholes equation. The theorem

above provides a converse of this statement, under an additional assumption: in an

arbitrage-free and complete market, any solution of the Black-Scholes equation is

the value of a self-financing portfolio.

To arrive at the replication of a given payoff at some future time T , one can

proceed in the following way. Suppose that CT is the given payoff; in a state space

model, we can write CT = f(XT ) where, if necessary, the state variables in the

vector XT have been extended to make it possible to represent the desired payoff in

this form. Choose any numéraire Nt = πN (t,Xt). Define a function πC(t, x) by

πC(t, x) = πN (t, x)EQN

[
f(XT )

πN (T,XT )

∣∣∣∣∣Xt = x

]
(3.55)

and note that πC(T,XT ) = f(XT ). The function that is defined in this way satisfies

the BS equation (3.31). This is seen as follows.
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Define the process Ct by Ct = πC(t,Xt). It follows from the definition (3.55)

and the tower law of conditional expectations that the discounted process Ct/Nt is

a Q-martingale. Consequently,

µC/N − σC/NλN = 0 (3.56)

where λN = λN (t, x) is such that the process W̃ defined by (3.28) is a Brownian

motion under Q. From (3.56) we have

µC/N = σC/N

(
λ−

σ>N
πN

)
.

Using the stochastic quotient rule (Lemma 3.2.4), we find from this

µCπN − πCµN = (σCπN − πCσN )λ

which can be reformulated as

µC =
µN − σNλ

πN
πC + σCλ. (3.57)

Because by definition the numéraire portfolio is self-financing, we have µN = rπN +

σNλ by Lemma 3.2.5 and so the factor multiplying πC in (3.57) is just r. This

completes the argument.

Therefore, given that we start with initial value C0 = πC(0, x0) =

N0E
QN [CT /NT ], it is possible by Thm. 3.53 to construct a portfolio strategy such

that for all t ∈ [0, T ] the value of the portfolio at time t is equal to πC(t,Xt), and

in particular the portfolio value at time T is equal to f(XT ). The formula (3.53)

gives the replication strategy as a solution of a matrix-vector equation which can be

solved in a straightforward manner. The formula may therefore be referred to as a

replication recipe. Some further details are given in Section 3.3.4 below.

It was shown above that solutions to the Black-Scholes equation (3.31), with

given terminal condition πC(T, x) = F (x), can be computed as conditional expec-

tations. The equation (3.31), as an equation for the pricing function πC with given

r and λ, can be rewritten as a partial differential equation; see (4.2) below. The

fact that solutions of certain partial differential equations can be obtained from

conditional expectations is the theme of the famous Feynman-Kac theorem.23

23Richard P. Feynman (1918–1988), American physicist; Nobel prize 1965. Mark Kac (1914–
1984), Polish/American mathematician.

91

OPEN PRESS TiU



Completeness and replication Financial models

3.3.4 Hedging

Theorem 3.3.2 can be used to construct hedging strategies for liabilities that depend

on future values of state variables. Assume that we have a complete and arbitrage-

free market described in state space form (3.1). Suppose that current time is t

and that at time T > t a payment will have to be made of size F (XT ), where

F : R → R is a given function and XT is the value of the state variable at time

T . Define a function πC(t, x) as in (3.55). This function satisfies the Black-Scholes

equation and so according to Thm. 3.3.2 there exists a self-financing portfolio that

is formed from the basic assets and that has the property that at time T , whatever

the realization of the state variable at that time may be, its value is exactly equal

to F (XT ). This confirms that the value of the contract at time t and given state x

is equal to πC(t, x). The strategy φ is called a hedging strategy because it provides

a perfect hedge against the liability F (XT ) arising at time T ; that is to say, the

strategy eliminates all uncertainty in connection with this contract.

The general form of the hedging strategy is given by (3.53). The matrix [σY πY ]

must have at least as many rows as it has columns for the market to be complete.

If the matrix is in fact square and invertible, then the hedging strategy is uniquely

determined. In the non-square case there is some indeterminacy due to the presence

of more than enough basic assets. Such redundancy may make it easier to take into

account implementation considerations such as transaction costs.

A special case of the general model (3.1) is the following: k = n−1 (the number

of sources of uncertainty is one less than the number of state variables), πY (t, x) = x

(the state variables are asset prices), and

σX(t, x) =

[
σS(t, x)

0

]
(3.58)

where σS(t, x) is square and invertible, so that the last state variable has a zero

volatility coefficient. Models of this particular form are often used in equity markets;

the first n−1 state variables are called “stocks”, the last one is a “bond”. For instance,

the standard Black-Scholes model is of this form. In models of this type, there is

a simple expression for the hedging strategy given by (3.53). Indeed, the general

expression σC = (∂πC/∂x)σX becomes, due to (3.58),

σC =
∂πC
∂xS

σS .

If we write φ> = [φ>S φB], where φS has n− 1 components and gives the positions
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to be taken in stocks, then (3.53) becomes

[ ∂πC
∂xS

σS πC

]
= [φ>S φB]

[
σS xS

0 xB

]
(3.59)

In particular we have
∂πC
∂xS

σS = φ>SσS

and hence, because σS is invertible,

φ>S(t, x) =
∂πC
∂xS

(t, x). (3.60)

Given this, the component φB which gives the position to be taken in bonds is

determined by the requirement that the portfolio should be self-financing. The

strategy (3.60) is called the delta hedge because the partial derivatives of the contract

value πC with respect to the values of the underlying assets are known as “deltas”.

In the special case of the standard Black-Scholes model, we can use a state

space representation with two state variables (called St and Bt) and one source of

randomness. For this model, the replication recipe (3.53) becomes

[ ∂πC
∂S

σ πC

]
= [φS φB]

[
σ S

0 B

]
. (3.61)

It follows that, within the BS model, replication is achieved by

φS(t, S) =
∂πC
∂S

(t, S). (3.62)

As expected, the hedging strategy takes the form of a delta hedge. The composition

of the hedge portfolio can be determined at any time by first determining the amount

of stocks that should be held according to the formula above, and subsequently

adjusting the amount of bonds in such a way that the portfolio is self-financing (i.e.

if stocks are bought then bonds are sold, and vice versa).

In a sense there is a paradox in arbitrage-based pricing theory in perfect markets.

An exact price for a contract can only be determined if the contract is replicable; but

that means that the contract is in fact redundant, since under the perfect-market

assumptions any market participant would be able to reproduce the same payoffs by

following a suitable hedging strategy. Hence it could be said that the only contracts

that can be priced are the ones for which there is no need. Following this reasoning,

the enormous growth of derivatives trading since the 1970’s can only be explained by
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the existence of market imperfections. For instance, transactions costs are nonzero

and are not the same for all market participants. However, this leads to a new

paradox: while the existence of market imperfections motivates options trading, at

the same time it invalidates the assumptions of frictionless markets on which most

of option pricing theory is based. The resolution of this paradox is one of degree:

it appears that the imperfections are large enough to motivate the existence of an

options market, and at the same time small enough so that the prices that are

derived under perfect-market assumptions are still useful as guidelines.

3.4 American options

Whereas a European option can only be exercised at the time of maturity, American

options may be exercised at any time before or at the maturity date. The value of an

American option is defined as the minimal premium that is needed to set up a self-

financing portfolio that will at least replicate the payoff at any time the option may

be exercised. If exercise takes place suboptimally, then the hedging portfolio will

have a positive surplus. Due to the early-exercise feature, the Black-Scholes partial

differential equation for the option value is replaced by a system of inequalities. This

system can be derived as follows.

A hedging strategy for an American option should be such that the value of the

hedging portfolio is sufficient to cover the payout obligations arising from the option,

whatever the exercise strategy of the holder may be. This also means that some

funds may be taken out of the portfolio in case the holder follows a non-optimal

strategy. Thinking for a moment in terms of small time increments ∆t, instead of

the usual condition for a self-financing portfolio

φ>t+∆tYt+∆t = φ>t Yt+∆t

we require now only the inequality

φ>t+∆tYt+∆t ≤ φ>t Yt+∆t. (3.63)

Subtracting φ>t Yt from both sides and returning to infinitesimals, we arrive at the

condition

dVt ≤ φ>t dYt (3.64)

for a portfolio Vt = φ>t Yt to be at least self-financing. The following theorem con-

cerning at least self-financing strategies is a direct analog of Thm. 3.3.2.

Theorem 3.4.1 Suppose that the model (3.1) is arbitrage-free and complete, and

let r and λ be the solutions of (3.31). Let πV = πV (t, x) be a piecewise twice
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continuously differentiable function24 that satisfies the inequality µV ≤ rπV + σV λ,

where µV and σV are defined as in (3.6). Then there exists an at least self-financing

strategy φ = φ(t, x) such that πV = φ>πY .

Proof Because the matrix [σY (t, x) πY (t, x)] has full column rank for all (t, x) ∈ D,

there exists a vector-valued function φ(t, x) such that

[σV (t, x) πV (t, x)] = φ>(t, x)[σY (t, x) πY (t, x)]. (3.65)

From the assumption that µV ≤ rπV + σV λ, it follows that

µV ≤ [σV πV ]

[
λ

r

]
= φ>[σY πY ]

[
λ

r

]
= φ>µY . (3.66)

Let Vt denote the value of the portfolio that is formed from the assets in Y by using

the portfolio weights φ. Then

dV = µV dt+ σV dW

≤ φ>µY dt+ φ>σY dW = φ>dY

which shows that the portfolio with weights φ is at least self-financing. �

In this proof, the fact is used that the value of the integral of a nonnegative function

with respect to time is always nonnegative. Note that an analogous property does

not hold for stochastic integrals. One might say that “dt is positive”.

The above theorem shows that portfolios that are at least self-financing appear

as solutions of the Black-Scholes inequality

µV ≤ rπV + σV λ. (3.67)

This inequality simply expresses the fact that taking money out of a portfolio de-

creases its growth rate.

Consider now the general case of an American option in the framework of the

model (3.1). In this Markovian setting, the optimal exercise strategy of the holder

of the option can be represented as a mapping which assigns to each time-state

pair (t, x) a decision “exercise” or “don’t exercise”. The strategy can therefore be

represented by the exercise region, that is, the set of all pairs (t, x) where the decision

is to exercise. Inside the exercise region, the value of the option is clearly equal to the

payoff function, say F (t, x). Outside the exercise region, the value of the American

option is equal to the value of a European contract that pays F (t, x) at the exercise

boundary. So, in the non-exercise region, the American option value must satisfy

24The regularity assumption ensures that the constructed portfolio strategy has continuous paths,
which in turn is needed for the applicability of the stochastic calculus rules of Chapter 2.
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the Black-Scholes equation. Also, we know that in the non-exercise region the option

value cannot be less than the value of immediate exercise (otherwise the choice of

the exercise region is surely not optimal). Therefore, the option value πC satisfies

the following conditions for all (t, x): either

µC(t, x)− r(t, x)πC(t, x) ≤ σC(t, x)λ(t, x) and πC(t, x) = F (t, x) (3.68a)

(exercise) or

µC(t, x)− r(t, x)πC(t, x) = σC(t, x)λ(t, x) and πC(t, x) ≥ F (t, x) (3.68b)

(non-exercise). Such a system of two inequalities in which always at least one has

to be satisfied with equality is called a variational inequality. It can be shown that,

under mild conditions, the variational inequality (3.68) has a unique solution that is

continuously differentiable in x (the “smooth pasting condition”—see Section 4.4.1).

The variational inequality can be solved explicitly in cases where a reduction to a

one-dimensional problem is possible, such as in Section 4.4.1, but in general one

has to take recourse to numerical methods in order to compute prices of American

options. Such numerical methods are discussed in Chapter 6 and Chapter 7.

3.5 Pricing measures and numéraires

3.5.1 Change of numéraire

From the equations (3.34), (3.33), and (3.37) it is seen that the function λ that

appears in (3.31) and the function λN that appears in (3.27) are related by

λ = λN +
σ>N
πN

. (3.69)

In the particular case of the money market account, we have σM = 0 and so λ = λM .

Consequently, we can write (cf. (3.28))

dWM = λ dt+ dW P (3.70)

where W P is a Brownian motion under the real-world measure, WM is a Brownian

motion under the risk-neutral measure, and λ is the market price of risk. Recall that

λ is a vector whose length is equal to the number of entries in the vector Brownian

motion W P, and that λ in general may depend on the state variables as well as

on calendar time. The equation (3.69) also shows that switching from the money
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market account to another numéraire can be carried out by

dWM = dWN +
σ>N
πN

dt (3.71)

where WM
t is a Brownian motion under QM and WN

t is a Brownian motion under the

new numéraire N . To shift from any given numéraire to any other given numéraire,

one can use the formula

dWN1 = dWN2 +

(
σ>N2

πN2

−
σ>N1

πN1

)
dt (3.72)

which follows from (3.71). In terms of the drift parameter which appears in the

state equation, the change-of-numéraire formula implies

µNX = µMX + σX
σ>N
πN

. (3.73)

An analogous formula holds when X is replaced by an asset price process in the

same state space model. Volatility parameters are not affected by the change of

measure.

The formula (3.71) holds under the usual convention that the Brownian motions

involved are standard vector Brownian motions, that is to say, their components

are independent. Sometimes it is convenient to write a model in terms of vector

Brownian motions whose components are dependent processes. Say, for instance,

that W is a vector Brownian motion with variance-covariance matrix Σ,25 in other

words: the increments Wt+∆t − Wt are normally distributed with expectation 0

and variance-covariance matrix ∆tΣ. The matrix Σ is nonnegative definite and

therefore it can be written in the form Σ = FF> where F is a (not necessarily

square) matrix of loading factors. In terms of the loading factors, we can write the

Brownian motion W in terms of a standard vector Brownian motion W , namely as

W = FW . The stochastic differential equation dX = µX dt + σX dW can then be

rewritten as dX = µX dt + σX dW , where σX := σXF is a matrix of exposures to

the standard Brownian motion W . When this technique is applied in connection

with a change of numéraire, the result is as follows:

dXt = µMX dt+ σX dW
M

25The use of the symbol Σ both to refer to a variance-covariance matrix and as a summation
symbol should not lead to confusion.
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= µMX dt+ σX dW
M

= µMX dt+ σX
(
dW

N
+
σ>N
πN

dt
)

=
(
µMX + σXF

F>σ>N
πN

)
dt+ σXF dW

N

=
(
µMX + σXΣ

σ>N
πN

)
dt+ σX dW

N

where WN is defined by WN = FW
N

. The process WN is a vector Brownian

motion under QN , with variance-covariance matrix Σ. In summary, the effect of

the change of numéraire is therefore that there is no change in the volatility nor in

the variance-covariance structure of the driving Brownian motion, and that the new

drift is given by

µNX = µMX +
σXΣσ>N
πN

. (3.74)

The variable X might be replaced here by other variables that are formulated in the

same model, such as asset price processes.

Given that the value of the numéraire Nt is given in terms of the state variables

Xt by Nt = πN (t,Xt), we have by the Itô rule

σN (t, x) =
∂πN
∂x

(t, x)σX .

The partial derivative on the right hand side with respect to the vector x is to

be understood as the row vector with components (∂πN/∂xi)(t, x). The function

πN can only take positive values, since N is a numéraire so that it must be positive

under all circumstances. We can therefore introduce the function log πN . The vector

σN/πN which appears in the change-of-numéraire formula (3.71) can be computed

as
σN
πN

(t, x) =
∂ log πN
∂x

(t, x)σX (3.75)

where again the partial derivative on the right hand side represents a row vector

consisting of partial derivatives with respect to the components of the state variable.

The formula (3.73) can consequently be written as

µNX = µMX + σXσ
>
X

(∂ log πN
∂x

(t, x)
)>
. (3.76)

3.5.2 Conditions for absence of arbitrage

The no-arbitrage condition (3.27) has been derived above from the fundamental

theorem of asset pricing by means of the Girsanov theorem. The FTAP states that

there must be a measure QN (depending on the chosen numéraire) that is equivalent

to the original (“real-world”) measure P and that is such that all relative price

98

OPEN PRESS TiU



Financial models Pricing measures and numéraires

processes are martingales with respect to QN . Thanks to the Girsanov theorem, the

change of measure from P to QN can be represented by a process λN,t, which in the

Markovian context of the state space model can be obtained as λN,t = λN (t,Xt)

where λN (t, x) is a suitable function of time and of the state variables. The measure

QN is connected to the process λN,t by the statement that the process WN
t defined

by WN
0 = 0 and

dWN
t = dWt + λN,t dt

is a Brownian motion under QN . This statement in fact fully specifies the measure

QN . In terms of the process WN
t , the stochastic differential equation for the state

variable in the generic model (3.1) can be written as

dXt = µX(t,Xt) dt+ σX(t,Xt) (dWN
t − λN (t,Xt) dt)

=
(
µX(t,Xt)− σX(t,Xt)λN (t,Xt)

)
dt+ σX(t,Xt) dW

N
t

= µNX(t,Xt) dt+ σX(t,Xt) dW
N
t

where µNX(t,Xt) is defined by

µNX(t,Xt) = µX(t,Xt)− σX(t,Xt)λN (t,Xt).

A model of the form (3.1) is said to be formulated “under QN” if it is written in

the form
dXt = µNX(t,Xt) dt+ σX(t,Xt) dW

N
t

Yt = πY (t,Xt)
(3.77)

where WN
t is a Brownian motion under QN . The relative price process Yt/Nt may

likewise be written as the solution of an SDE driven by the process WN
t :

d(Yt/Nt) = µNY/N (t,Xt) dt+ σY/N (t,Xt) dW
N
t

where

µNY/N (t,Xt) = µY/N (t,Xt)− σY/N (t,Xt)λN (t,Xt).

The condition (3.31) becomes

µNY/N (t,Xt) = 0. (3.78)

The process Yt satisfies the equation dYt = µNY dt+σY dW
N
t with µNY = µY −σY λN .

In terms of µNY , the condition (3.31) can be written as

µNY + σY λN − rπY = σY λ
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which in view of (3.69) can also be written in the form

µNY = rπY + σY
σ>N
πN

. (3.79)

In particular, if the money market account Mt is used as a numéraire, then we have

the relationship

µMY = rπY (3.80)

since σM = 0 by definition of the money market account. In other words, in an

arbitrage-free model driven by processes that are Brownian motions under the equiv-

alent martingale measure QM that corresponds to taking the money market account

as a numéraire, the relative drifts of the assets, which represent the expected re-

turns of these assets under the measure QM , are all equal to the short rate. The

measure QM is sometimes called the risk-neutral measure. In longhand notation,

the evolution of asset prices under the risk-neutral measure is given by

dYt = rtYt dt+ σY (t,Xt) dW
M
t

where WM
t is a Brownian motion under QM .

For instance, the standard Black-Scholes model is written in the following way

under the measure QB that corresponds to taking the bond as a numéraire:

dS = rS dt+ σS dW (3.81a)

dB = rB dt (3.81b)

where W is a Brownian motion under the measure QB.26 The differential equation

for Bt is deterministic, and so it keeps the same form under any change of measure.

In the Black-Scholes model, the price of the stock is always positive and we can

therefore take it as a numéraire. Under the corresponding measure QS , the BS

model is written, according to (3.79), as

dS = (r + σ2)S dt+ σS dW (3.82a)

dB = rB dt (3.82b)

where now W stands for a Brownian motion under QS .

For purposes of pricing, it is enough to have the model (3.77) together with a

specification of the numéraire on which it is based. The drift terms of those state

26We drop the explicit reference to the numéraire in the notation, as is common in the literature.
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variables that are actually prices of traded assets can easily be established on the

basis of (3.79). The drift terms under Q of other state variables can be inferred from

a calibration exercise; this means that some parametrization is assumed for the drift

terms, and the parameters are tuned by optimizing the match of prices produced by

the model to actually observed market prices of selected (liquidly traded) products.

This is a general technique which can be used to determine various parameters in

pricing models.

For purposes of replication, again it is enough to have the model (3.77). This is

because the “replication recipe” (3.53) depends only on quantities that are invariant

under change of numéraire. Indeed, the state volatility matrix σX is not affected

by a change of numéraire, and asset volatilities depend only on the pricing function

and the state volatility matrix, as shown by (3.6b). Therefore the input quantities

in (3.53) can be taken directly from a given model under an arbitrary equivalent

martingale measure Q.

A disadvantage of model formulation under Q is that the price of risk is not de-

termined, so that a potential warning signal is lost which could arise if, for whatever

reason (for instance because the parametrized model that is used does not closely

match reality) the results of the calibration process are not in line with economic

intuition. The shortcuts made possible by the relation (3.79) however make the

formulation under a martingale measure attractive. Moreover, it is often possible

to simplify a problem formulation by a clever choice of the numéraire, as seen in

various examples in Chapter 4. The price of risk, which connects models under Q
to models under the real-world measure P, is discussed further in Section 3.6.

3.5.3 The pricing kernel

Assume that we have an arbitrage-free model of the form (3.1), and that r and λ

satisfy (3.31). Introduce a process Kt by K0 = 1 and

dK = −K(r dt+ λ>dW ). (3.83)

This process is called the pricing kernel. It has the following property: a function

πC = πC(t, x) satisfies the no-arbitrage equation (3.43a) if and only if the process

Ct defined by Ct = πC(t,Xt) is such that the product process KtCt is a martingale

with respect to the real-world measure P. To see this, note that

d(KC) = KdC + CdK + d[K,C] =

= K(µC dt+ σC dW ) + C(−K(rdt+ λ>dW ))−KσCλ dt =

= K[(µC − rπC − σCλ)dt+ (σC − πCλ>)dW ].

The drift term vanishes if and only if (3.43a) is satisfied.
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Suppose now that we want to price a European option that matures at time T

and that has a payoff function F (x). From the above, it follows that the time-0

price of this derivative that is consistent with the assumed riskless rate of return r

and market price of risk λ is given by

πC(0, x) = EP[KTF (XT ) | X0 = x].

More generally, this equation may be written for a general time point t < T :

πC(t, x) = EP[KTF (XT ) | Xt = x, Kt = 1]. (3.84)

Here, the processes Xt and Kt are generated jointly by (3.4) and (3.83). It is not

possible in general to express Kt as a function of Xt; the pricing kernel should rather

be viewed as an additional state variable.

An advantage of the pricing kernel method is that it involves only expectations

under the real-world measure P, so that any difficulties of interpretation associated

to changes of numéraire are avoided. This advantage would be called a disadvantage

by those who prefer to have the freedom of choosing a suitable numéraire for a

given pricing problem; see for instance the examples in Chapter 4. Actually it

may even be argued that the pricing kernel method is just a particular case of the

change-of-numéraire method. Indeed, it can be shown that the inverse of the pricing

kernel process constitutes a self-financing portfolio whose price is always positive,

and whose associated equivalent martingale measure coincides with the real-world

measure.

The relationship between the pricing kernel and a given numéraire can be de-

scribed on the basis of the equality

EQN [CT /NT ] = EP[KTCT ]

which must hold for any payoff CT , given the normalization N0 = 1. This relation-

ship shows that

Kt = θNt /Nt (3.85)

where θNt is the Radon-Nikodym process that describes QN in terms of P. In other

words, the pricing kernel includes both a change of measure (multiply by θNt ) and

discounting (divide by Nt). The definition (3.83) shows this as well.
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3.5.4 Calibration

Practitioners often arrive at models for particular financial markets by starting from

a parametrized model class specified under Q, where a numéraire may be chosen that

is convenient in relation to the products that are of interest, and then determining

the unknown parameters by a procedure called “calibration”. This means that the

model parameters are chosen in such a way that the prices that are observed in

the market for a number of selected products (typically the most liquid products

in the market) are matched as closely as possible. The method is based purely on

price information; historical (time series) information is not used at all. Typically

the number of products that are used for calibration is larger than the number of

model parameters that can be adjusted, often even much larger. Consequently, not

all prices can be matched exactly and nonlinear optimization methods are used to

determine a match that is best according to a chosen criterion, for instance the

sum of squares of differences between prices produced by the model for the selected

products and prices for these products that are observed in the market. In the

search for an optimum, the selected products will have to be repriced many times

with different parameter values; this is one reason for the popularity of models that

allow fast pricing of liquid products.

As a simple example, consider the determination of the volatility parameter in

the Black-Scholes model on the basis of the observed price of a call option with a

particular strike and maturity. If we think of a model that is specified under the

risk-neutral measure, then the volatility parameter is indeed the only free parameter

in the BS model. If calibration is done on the basis of a single observed price, then

the problem comes down to solving the equation (3.50) where now C0 is given and

σ is the unknown. To find the solution, one can make use of the fact that the

derivative of the Black-Scholes price with respect to the volatility parameter can be

computed exactly; indeed, calculation shows that if C0 is given by (3.50), then

∂C0

∂σ
= S0φ(d1)

√
T (3.86)

where φ(x) = (2π)−
1
2 e−

1
2
x2

is the density of the standard normal distribution, and

d1 is given by (4.21b).27 Therefore it is possible to use Newton’s method28 for

solving nonlinear equations. This method iteratively constructs approximations to

a solution of the equation f(x) = a, starting from an initial guess x0, by the rule

xk+1 = xk −
f(xk)− a
f ′(xk)

. (3.87)

27The sensitivity of an option price with respect to the volatility parameter is called the vega of
the option.

28Sir Isaac Newton (1643–1727), British physicist and mathematician.
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In many situations, Newton’s method converges quickly. The method does require

that one is able to compute the value of the derivative function f ′(x) at any given

point x. When the function f is given in analytic form it is usually not difficult to

find f ′ as well, but in pricing applications such luxury is not always available. One

then has to resort to other root-finding algorithms, which can for instance be based

on the construction of an approximation to the derivative of f at a given point.

Numerical algorithms must also be used when the number of prices that are used

for calibration is larger than the number of free parameters in the model, so that

an optimization problem has to be formulated and solved.

When the volatility parameter in the BS model is found from calibration rather

than from application of an estimation technique to the observed time series of

prices of the underlying asset, one speaks of the implied volatility (as opposed to the

historical volatility). One reason why the implied volatility can be different from

the historical volatility is that volatility is in reality not constant, and current prices

reflect market’s expectations regarding volatility in the future, whereas historical

volatility by its nature must refer to volatility in the past. Another reason is that

the BS model is quite simple and does not reflect all the risks that are perceived by

the market in relation to the underlying asset. Therefore, the price based on the

BS model in combination with historical volatility may produce an underestimate

of the actual price. Correspondingly, the implied volatility is then higher than the

historical volatility. For an example in which such a correction can be calculated

explicitly, see Section 4.4.4.

3.6 The price of risk

The numéraire-dependent pricing formula (3.25) indicates that, for the purposes of

derivative pricing, it is sufficient to have a model of the form (3.77), i.e. a model

“under Q”. The replication recipe (3.53) shows that the same is true for replication

and hedging. It therefore seems that, at least for pricing and hedging, models under

Q are all that one needs,29 and the real-world measure P can be dispensed with.

In fact, this might be viewed as a happy circumstance: real-world probabilities are

often difficult to determine precisely, whereas the parameters in models under Q can

be obtained from calibration.

It should be remembered, though, that the theory of rational option pricing is

built on assumptions that are at best only approximately satisfied in actual financial

markets. These assumptions include the availability of costless and arbitrarily fast

29More precisely, a model under QN should be provided, where N is a given numéraire. However,
if one such model is given, then models under equivalent martingale measures corresponding to
other numéraires can be derived from the change-of-numéraire formulas in Section 3.5.1, which do
not require the real-world measure.
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trading, and the impossibility of market manipulation. Moreover, even if these

assumptions are accepted, it may still happen that a model used for a particular

situation is not correct. If a model is specified with a sufficient amount of flexibility in

parameters, chances are that it can be successfully calibrated to price data, but that

does not guarantee correctness of the model under changing market circumstances.

Therefore, while theoretically all risk associated with a derivative product can

be hedged away in a complete market, in actual practice one still needs to be aware

of risks that remain, due to market frictions, model failures, and other factors such

as possible fraud. Risk management is a typical example of a domain in which real-

world probabilities are important, rather than risk-neutral probabilities. In fact,

one may say that while models under equivalent martingale measures are good for

pricing and hedging, they are not good for anything else.30 Since this book is about

rational derivative pricing, the use of models under Q is pervasive, but that should

not lead the reader into thinking that the real-world measure can be discarded.

The relation between the real-world measure P and the risk-neutral measure Q
can be described in terms of a Radon-Nikodym process, or equivalently, and typically

more conveniently, in terms of the process λt that appears in Girsanov’s theorem. In

the context of state-space models, the process λt becomes a function λ(t,Xt) of time

and of the state process Xt. The term “market price of risk” that is often used for λ

is motivated by the absence-of-arbitrage condition µC = rπC + σCλ. For instance,

in the context of the Black-Scholes model, this condition can be read as stating

that λ (which is a scalar in the BS model) is equal to the number of percentage

points of expected return on a fixed-mix portfolio that is earned by accepting an

additional percentage point of volatility. More generally, the formula describes the

excess expected return31 on an asset as the sum of products of two factors, one

factor being the exposure of the asset to risk factor i as given by the i-th entry of

the vector σC , and the other factor being the market price of risk associated to risk

factor i, as given by the i-th entry of the vector λ. Decomposition of expected asset

returns in this way is at the very heart of financial theory.

To connect a given model under Q to the real world, one needs to quantify the

market prices of risk associated to the various risk factors in the model. Inserting

these, one finds real-world drift terms for asset prices and other variables that may

appear in the model. Alternatively, from empirical data concerning those drifts one

can derive the implied market prices of risk within the model. Having a model under

P is essential for purposes such as risk management and portfolio optimization. But

even if a given model is to be used just for pricing purposes, looking at implied prices

30Moreover, only expectations under Q are relevant. For instance, the variance of a payoff under
Q does not have an economic meaning, although it can be a relevant quantity in some numerical
procedures (see Ch.7).

31The excess expected return is defined as the expected return minus the riskfree return.
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of risk provides one way of testing the plausibility of proposed model parameters.

Unfortunately, empirical determination of real-world drift factors in financial

models is notoriously difficult. To illustrate the problem, consider estimation of

the parameter µ in the standard Black-Scholes model under P. Assume that T

years of observations are available, and that for the purpose of estimation this ob-

servation period is divided into N intervals of length ∆T = T/N . According to

the BS model, the log returns of the stock across these intervals are independent

and normally distributed with mean (µ − 1
2σ

2)∆T and standard deviation σ
√

∆T .

Under the assumption that the volatility is known, taking the average of the re-

alized log returns across the intervals of length ∆T produces an estimate of the

per-period logarithmic return (µ− 1
2σ

2)∆T that has an error bound 1.96σ
√

∆T/
√
N

at the 95% confidence level. This implies that the error bound for the parameter µ is(
1.96σ

√
∆T/
√
N
)
/∆T = 1.96σ/

√
T . Given that volatilities in the range of 0.1 to 0.2

are common and observation periods for stock prices are usually less than 100 years,

this implies error bounds in the range of two to five or more percentage points. This

is quite substantial, given that point estimates of µ are often in the range of 5 to 10

percentage points. Moreover, the assumption that the expected return is constant

across periods spanning many decades is probably not warranted. We simply have

to live with the fact that financial markets are too noisy (in the signal processing

sense) and too unstable to allow any precise estimates of drift parameters.

The large uncertainty in estimation of drift parameters has an impact on what

can be said about the market price of risk. For instance, if in the BS model one

takes µ = 8%, r = 2%, and σ = 20%, then the corresponding price of stock market

risk is found to be

λ =
µ− r
σ

=
0.08− 0.02

0.20
= 0.30.

But one may also take a lower estimate of the expected return, for instance 5%; the

market price of stock market risk that would follow from this is 0.15. If one sets

µ = 11% and σ = 15%, while keeping r = 2%, then one arrives at λ = 0.60. While

the differences between these estimates are substantial, still at least some indication

can be derived about what is a reasonable level for the price of stock market risk.

In addition to empirical research, another view on the market price of risk can

be derived from economic theory. Briefly, a standard (“neoclassical”) analysis might

proceed as follows. Consider a representative investor whose utility from wealth w0

at time 0 and wealth wT at time T is given by

E
[
u(w0) + δTu(wT )

]
where u(·) is a utility function, δT is a deterministic subjective discount factor,32 and

32The term “subjective” here means that the number δT is specified as part of the agent’s pref-
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expectation is taken under the real-world measure. Suppose that w0 (deterministic)

and wT (stochastic) represent the current situation of the investor, and that the

investor has the opportunity to either buy or sell a small amount of a contract that

generates payoff CT at that time T and that has price C0. The investor will neither

buy nor sell if she is indifferent, in other words, if the following equality holds:( d

dα
E
[
u(w0 − αC0) + δTu(wT + αCT )

])∣∣∣
α=0

= 0. (3.88)

The assumption the investor is representative implies that the indifference equa-

tion (3.88) is satisfied in equilibrium. In other words, (3.88) can be taken as an

equilibrium equation that determines the equilibrium price at time 0 of the asset

generating the stochastic payoff CT at time T .

A more explicit form of (3.88) is obtained by differentiating and inserting α = 0.

One finds

−C0u
′(w0) + δTE

[
u′(wT )CT

]
= 0

so that

C0 = E
[
δT

u′(wT )

u′(w0)
CT

]
.

This is the pricing formula. We can write it as C0 = E[KTCT ] if we define

KT = δT
u′(wT )

u′(w0)
. (3.89)

In this way, the pricing kernel can be viewed as marginal utility of representative

wealth at time T , normalized by marginal utility of representative wealth at time 0

and a discount factor.

Within the context of the generic state space model, the vector λ relates to the

pricing kernel through (see (3.83)

dKt = −Kt

(
r(t,Xt) dt+ λ(t,Xt)

>dW
)
.

This implies (in shorthand notation)

d(log K) =
1

K
dK − 1

2

1

K2
d[K,K] = −(r + 1

2λ
>λ) dt− λ>dW.

Given the relation of the pricing kernel to marginal utility, we can therefore think of

−λi∆Wi as the shock in the log marginal utility of the representative investor that

is generated by a shock ∆Wi in the i-th driving Brownian motion. These relations

are shown in the diagram of Fig. 3.1.

If the utility function is concave, as usually assumed, then marginal utility is a

erences, rather than as a market rate.
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Figure 3.1: The neoclassical view of the market price of risk.

decreasing function of wealth. Therefore the following relations are suggested:

• the market price of a risk factor is positive when positive shocks correlate

positively with the wealth of the average investor;

• the market price of a risk factor is negative when positive shocks correlate

negatively with the wealth of the average investor.

This, for instance, provides reason to believe that the price of stock market risk

should be positive. As always, correlation should not be confused with causation.

For instance, higher oil prices are in general correlated with higher levels of economic

activity representing good news for the representative investor; consequently, oil

price risk might be priced positively, even though higher cost of energy is unfavorable

to many (but not all) companies. Market prices of risk may well be state-dependent.

For instance, it could be that the market price of oil price risk is positive at low

levels of oil prices, but goes down as the oil price rises and becomes negative at high

levels.

3.7 Exercises

1. This exercise calls for a proof of the Fundamental Theorem of Asset Pricing in

the simplest possible case: two assets, two possible future states. The symbol R2
+

denotes the nonnegative cone in R2, i.e. the set of all 2-vectors with nonnegative

entries, also known as the first quadrant.

a. Prove that the following statements are equivalent for a one-dimensional subspace

V of R2:

(i) V intersects R2
+ only in the point 0;

(ii) there exist positive real numbers y1 and y2 such that

V =

{[
x1

x2

] ∣∣∣∣∣ y1x1 + y2x2 = 0

}
.
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b. Consider two assets that trade at time 0 at price S0 and B0 respectively, and

that at time 1 either have prices Su and Bu, or Sd and Bd. Assume that all of B0,

Bu and Bd are positive. Show that exactly one of the following statements holds:

(i) there exist numbers φ0 and ψ0 such that φ0S0 + ψ0B0 = 0, φ0Su + ψ0Bu ≥ 0,

φ0Sd+ψ0Bd ≥ 0, and at least one of φ0Su+ψ0Bu and φ0Sd+ψ0Bd is positive;

(ii) there exist positive real numbers qu and qd, with qu + qd = 1, such that

quSu/Bu + qdSd/Bd = S0/B0.

2. Consider an asset whose price St follows a process given by

dSt = µS(t, St) dt+ σS(t, St) dWt.

Suppose that there is another traded asset whose price Ct is determined as a con-

tinuously differentiable function πC(t, St) of t and St. Assume that (i) the price St

is always positive, (ii) the volatility σS(t, S) is always positive, and (iii) the rela-

tive price Ct/St is a strictly increasing function of St (in other words, the function

πC(t, S)/S is strictly increasing as a function of S for every fixed value of t).

a. Prove that the market consisting of the two assets St and Ct is complete and

arbitrage-free.

b. Assume now that a third asset is given by the equation dBt = rBt dt, where r is

a constant. State the conditions under which the market is still arbitrage-free.

c. Assuming the conditions of the previous part, show how the value of the asset Bt

can be replicated by a self-financing portfolio consisting of the assets St and Ct.

3. Verify that the function defined by (3.51) solves the partial differential equation

(3.52). While this can be done by brute-force differentiation, it may help to establish

the following facts in order:33

1
2(d2

1 − d2
2) = 1

2(d1 + d2)(d1 − d2) = log(S/K) + r(T − t) (3.90)

Sφ(d1) = e−r(T−t)Kφ(d2) (3.91)

∂π

∂t
(t, S) = −re−r(T−t)KΦ(d2)− Sφ(d1)

1

2σ
√
T − t

(3.92)

∂π

∂S
(t, S) = Φ(d1) (3.93)

∂2π

∂S2
(t, S) = φ(d1)

1

σS
√
T − t

. (3.94)

33The notation φ(x) is used for the derivative of the standard normal cumulative distribution
function, i.e. φ(x) is the standard normal density function (1/

√
2π) exp(− 1

2
x2).
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Be sure to verify the boundary condition as well.

4. Produce a plot of the call option value (3.50) as a function of the value of the

underlying for the following parameter values: t = 0, K = 100, T = 1, σ = 0.2,

r = 0.04. Also draw this plot when T = 5, and the other parameter values are the

same as before. To which limit does the plot tend if T is increased more and more?

5. Compute the limit of the call option price (3.50) as σ tends to zero and as σ

tends to infinity, while other parameters remain fixed.

6. The Black-Scholes formula (3.50) appears to give the call option price as a

function of five parameters, namely the current stock price St, the time to maturity

T , the strike K, the volatility σ, and the interest rate r. However, show that

the option price relative to the stock price, C0/S0, can be written as a function

of only two parameters, namely m = erTS0/K (“moneyness”)34 and σtm = σ
√
T

(“volatility to maturity”). Plot the relative call option price as a function of volatility

to maturity in the range from 0 to 0.5 when moneyness is equal to 0.8, 0.9, 1, 1.1,

and 1.2. Which approximation would be suggested when the moneyness is 1?

7. For fixed values of r, T , and K, define a function of two variables f(S0, x) by

f(S0, x) = S0Φ(x)− e−rTKΦ(x− σ
√
T ) (3.95)

so that f(S0, d1) with d1 given by (3.50b) is the Black-Scholes call option value.

a. Show that the partial derivative of f(S0, x) with respect to x, when evaluated at

x = d1, is equal to 0.

b. Using part a., derive the relation (3.93).

c. Let the function g(y; a), with parameter a, be defined for y ∈ [0, 1] by

g(y; a) = Φ
(
a+ Φ−1(y)

)
.

Prove that this function is convex if the parameter a is positive.

d. Show that the function f(S0, x) defined in part a., when considered as a function

of x for fixed S0, has a global maximum at x = d1. [Hint : use part c.]

8. A market is given as follows:

dSt = µSt dt+ σSt dW1,t

dFt = µ1Ft dt+ σ1Ft dW1,t + σ2Ft dW2,t

dBt = rBt dt.

34We can also write m = S0/(e
−rTK), to express moneyness explicitly as the quotient of the

current value of the underlying and the current value of the strike.
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All three variables represent prices of traded assets; St is a stock index, Ft is the share

price of an exchange-traded investment fund, and Bt is a bond. The parameters µ,

σ, µ1, σ1, σ2, and r are positive constants. The Brownian motions W1,t and W2,t

are independent.

a. Show that the market as defined above is arbitrage-free and complete.

b. Show that, if the price of risk associated to the Brownian motion W2,t is zero,

the following relation holds:35

µ1 − r =
σ1

σ
(µ− r). (3.96)

What could be a possible economic motivation for the assumption that the price of

risk associated to W2,t is zero?

9. In this exercise, we test the standard Black-Scholes delta hedge strategy when

it is implemented in discrete time, and relate its behavior to the final asset value

and to realized volatility. We consider a call option with strike K = 100 maturing at

time T = 1; current time is 0, current value of the underlying asset is S0 = 100, the

drift parameter is µ = 0.12, the volatility parameter is σ = 0.20, and the interest

rate is r = 0.04; the time step is ∆t = 0.01.

Write a program to generate scenarios for the joint evolution of the following

variables: stock price S; bond price B; value of the replicating portfolio V ; stock

holdings in the replicating portfolio φS ; bond holdings in the replicating portfolio

φB. Let the initial value of the replicating portfolio be equal to the price of the

option according to the Black-Scholes formula (3.50). At each time step, update φS

according to the delta strategy (note that the delta corresponding to the call option

price is given in (3.93)) and then update φB in such a way that the replicating

portfolio is self-financing. To update the values of S and B, you may use the exact

formulas or use Euler approximations.

a. The hedge error is defined as

HE = VT −max(ST −K, 0)

where VT is the value of the replicating portfolio at the time of maturity. Use the

program you have written to generate 1000 scenarios, and plot a histogram of the

hedge errors that you obtain from these scenarios. Also compute the expectation

and the standard deviation of the hedge error. Compare the standard deviation of

the hedge error to the standard deviation of the option payoff itself. Is the hedge

35The formula (3.96) is reminiscent of the relation that is derived in the Capital Asset Pricing
Model (CAPM) between the excess expected return of a given investment portfolio and the excess
expected return on a broad market portfolio.
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effective? [Hint : If the standard deviation of the hedge error that you find is larger

than 1% of the value of the underlying at time 0, you may want to have another

look at your implementation of the delta hedge.]

b. Plot a scatter diagram of the hedge error versus the final asset value ST . Which

phenomenon do you observe?

c. The realized volatility corresponding to a particular price path (St0 , St1 , . . . , StN ),

where ti = i∆t and N = T/∆t, is defined by36

σreal =

(
1

T

N∑
i=1

(Sti+1 − Sti
Sti

)2
) 1

2

.

Extend your program so that it also computes realized volatility along each of the

trajectories. Again generate 1000 scenarios and plot a scatter diagram of the hedge

error versus the realized volatility. Which phenomenon do you observe?

10. In this exercise we compare two replication strategies for a call option in the

BS model, using the same parameters as in Exc. 9. One is the standard delta hedge,

and the other is the so called stop-loss hedge. The latter strategy holds one unit of

the stock as long as the option is in the money (i.e. St > e−r(T−t)K), and sells the

stock as soon as the option goes out of the money. The idea behind this strategy

is that the hedger (i.e. the party that has written (sold) the option) will need to

deliver one unit of the stock if the option ends in the money, while no delivery needs

to take place in the opposite case. Of course, the trading strategy in stocks needs

to be accompanied by an appropriate trading strategy in bonds in order to form a

self-financing hedge portfolio. To assess the quality of the two strategies, we can use

a numéraire, as in (3.16).

a. Take the bond as a numéraire. Show that the relative asset price Ŝt := St/Bt

satisfies the SDE

dŜt = (µ− r)Ŝt dt+ σŜt dWt.

Define K̂ = e−rTK. Verify that, in terms of the variable Ŝt, the delta hedge is given

by

φ∆
1,t = Φ(d1,t), d1,t =

log(Ŝt/K̂) + 1
2σ

2(T − t)
σ
√
T − t

and the stop-loss hedge by

φSL
t =

{
1 if Ŝt > K̂

0 if Ŝt ≤ K̂.

36An alternative definition that is also sometimes used replaces the relative return (Sti+1−Sti)/Sti
by the log return log(Sti+1/Sti). The difference between the two quantities is small when Sti+1 is
close to Sti .
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In both cases, φt indicates the amount of units of the stock that are in the hedge

portfolio at time t.

b. Write a script that generates scenarios of the stock price in discrete time steps

∆t. Use the exact formula for the geometric Brownian motion, rather than the

Euler approximation. Compute the sum of trading gains/losses corresponding to

the stop-loss hedge in 1000 scenarios (see the summation term in (1.13)), using step

size ∆t = 0.1, and also the outcomes in the same scenarios of the call option payoff

(relative to the numéraire at time T ) ĈT = max(ŜT − K̂, 0). Draw a scatter plot,

and compute the standard deviation of the difference between the two variables in

the scenarios that you generated. Repeat these steps for the delta hedge. Which of

the two strategies leads to the smallest standard deviation?

c. Repeat the experiment of part b. using ∆t = 10−k for k = 2, 3, 4. Which trends

do you observe?

d. Explain how the Black-Scholes price of the option is reflected in the scatter

diagrams.

11. The dynamic hedging strategy as developed in Section 3.3.4 is model-dependent.

Alternatively, one can hedge a given product by replicating its payoff as well as

possible by a linear combination of other products which are already liquidly traded

in the market. This is called static hedging .

a. A butterfly option, written on an underlying with price St at time t, is a contract

that has a payoff of the following form:

CT =


0 if ST ≤ K1 or ST ≥ K3

L(ST −K1)/(K2 −K1) if K1 ≤ ST ≤ K2

L(K3 − ST ))/(K3 −K2) if K2 ≤ ST ≤ K3

(3.97)

where K1, K2, K3 and L are parameters such that K1 < K2 < K3 and L > 0. Show

that the payoff of this contract can be perfectly replicated by a linear combination

of three call options.

In cases where a given product cannot be perfectly replicated by static hedging, one

may still look look for a linear combination of available assets that replicates the

target product as closely as possible. As a measure of hedge quality, one can use for

instance

HQ = 1− std(CT −HT )

std(CT )
(3.98)

where CT is the payoff of the target product, HT is the value at time T of the

hedge portfolio, and the standard deviation is taken under the real-world probability

measure.
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b. Prove that, if HT results from an linear combination of available assets which is

optimal in the sense of the criterion (3.98), then

HQ = 1−
√

1− ρ2 (3.99)

where ρ is the correlation coefficient of CT and HT . What value does the correlation

coefficient ρ need to have in order to achieve 50% hedge quality? Which value is

needed to get 80% hedge quality?

12. Let St denote the price of an asset and suppose that St follows a geometric

Brownian motion, so dSt = µSt dt + σSt dWt. Let Ct denote the price of some

derivative and assume that the interest rate is zero, so that Ct is given by Ct =

πC(t, St) where πC is a function of two variables t and S that satisfies the partial

differential equation

∂πC
∂t

(t, S) + 1
2σ

2S2∂
2πC
∂S2

(t, S) = 0. (3.100)

Consider now the portfolio that is composed as follows: long one unit of the

derivative, short ∂πC
∂S units of the asset. So the value of the portfolio is given by

Vt = f(t, St) with

f(t, S) = πC(t, S)− S ∂πC
∂S

(t, S). (3.101)

a. Prove that

dVt = −S2
t

∂2πC
∂S2

(t, St)(µdt+ σ dWt). (3.102)

[Hint : You may want to use, among other things, the equation that you get by

differentiating (3.100) with respect to S.]

b. Is the portfolio Vt self-financing, i. e. does it satisfy dVt = dCt − ∂πC
∂S (t, St) dSt?

13. Prove the following generalization of the replication theorem Thm 3.3.2. As-

sume the same conditions as in the theorem, except for the completeness, so that

the equation µY − rπY = σY λ may have non-unique solutions. Show that a port-

folio value function πC = πC(t, x) can be replicated if and only if the equation

µC − rπC = σCλ is satisfied for all pairs (r, λ) such that µY − rπY = σY λ.

14. For a European investor, a savings account with an American bank is not

the same as a savings account with a European bank, because the value in euros

of the American account is affected by the euro/dollar exchange rate, whereas this

is not the case for the European account. Also, the American interest rate may be

different from the European rate. The situation may be modeled as follows:

dBE
t = rEB

E
t dt
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dBA
t = rAB

A
t dt

dZt = µZt dt+ σZt dWt

St = ZtB
A
t

where BE
t and BA

t are the values of the European and the American accounts in

their respective currencies, rE and rA denote the European and the American rate

respectively, Zt is the exchange rate from dollars to euros, µ and σ are constants,

and St is the value of the American account in euros.

a. Show that the model is complete (with assets BE and S), and determine the

risk-free rate of return and the market price of risk.

b. Suppose that BE is taken as a numéraire. Give the exchange rate dynamics

under the corresponding equivalent martingale measure.

15. a. Verify the validity of the expression (3.86) for the vega of a call option in

the Black-Scholes model.

b. Implement Newton’s method (3.87) to find the implied volatility, according to

the Black-Scholes model, of a call option that has time to maturity T = 1, strike

K = 100, and market price C0 = 8.00, given that the current price of the stock

is S0 = 100 and the interest rate is r = 0.04. As an initial guess for the implied

volatility, take any positive number that you like. As a stopping criterion for the

iteration (3.87), accept the value xk as the true value when the difference between

xk and the previous estimate xk−1 is less than 10−5. How many steps does the

method take to converge? Verify the validity of the answer by applying the Black-

Scholes formula in which you take σ equal to the value that you have found from

the iteration.

c. Repeat part b., but this time stop only when the difference between successive

iterates in Newton’s method is less than 10−10 instead of 10−5. How many steps

does it take now for the algorithm to converge?

115

OPEN PRESS TiU



Exercises Financial models

116

OPEN PRESS TiU

Bursuc



Chapter 4

Analytical option pricing

This chapter gives an outline, with examples, of the basic methods of computation

of prices for contingent claims. The emphasis here is on cases in which an analytical

solution may be found. Numerical methods are discussed in later chapters.

4.1 Three ways of pricing

4.1.1 The Black-Scholes partial differential equation

Let a model for a financial market be given in state space form (3.1). If the model

is free of arbitrage, there exist functions r(t, x) and λ(t, x) such that the Black-

Scholes equation (3.31) is satisfied. Lemma 3.2.5 then states that, for any self-

financing strategy φ = φ(t, x), the pricing function πC = φ>πY satisfies the equation

µC = rπC+σCλ where µC and σC are related to πC as in (3.6). Writing this equation

explicitly, we obtain

∂πC
∂t

+
∂πC
∂x

µX + 1
2 tr

∂2πC
∂x2

σXσ
>
X = rπC +

∂πC
∂x

σXλ (4.1)

or, in slightly rewritten form,

− ∂πC
∂t

= 1
2 tr

∂2πC
∂x2

σXσ
>
X +

∂πC
∂x

(µX − σXλ)− rπC . (4.2)

In the theory of partial differential equations, the above equation is classified as being

of backward parabolic type. Under mild conditions, when a function F (x) is given,

there exist solutions of this equation for t ≤ T which are such that πC(T, x) =

F (x). In a complete market, this means that there is a self-financing portfolio

that generates a given state-dependent payoff at time t = T ; in other words, the

portfolio replicates a European derivative with payoff function F (XT ). The value

of this portfolio at any time prior to T is the arbitrage-free price of the derivative

at time t, expressed as a function of the current time and the current state. More
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generally, solutions can be defined by conditions along other boundaries as well.

This is illustrated in the example below.

Example 4.1.1 Consider the pricing of a perpetual double-barrier option in the

standard Black-Scholes model. The model is

dSt = µSt dt+ σSt dWt (4.3a)

dBt = rBt dt (4.3b)

where both S and B are tradable assets. The contract that we consider here pays

1 euro when St reaches a given lower level L and expires worthless when St reaches

a given upper level U . It is assumed that L < S0 < U ; the contract remains alive

as long as neither the level L nor the level U has been reached. The Black-Scholes

equation corresponding to the model (4.3) is

− ∂π

∂t
(t, S) = 1

2σ
2S2 ∂

2π

∂S2
(t, S) + rS

∂π

∂S
(t, S)− rπ(t, S). (4.4)

To obtain the pricing function of the contract, add the boundary conditions

π(t, L) = 1, π(t, U) = 0 (0 < t <∞). (4.5)

Calendar time plays no role in the definition of the contract and so its pricing

function should not depend on t. Therefore, we are looking for a function π = π(S)

that solves the ordinary differential equation

1
2σ

2S2 d
2π

dS2
+ rS

dπ

dS
− rπ = 0 (4.6)

on the interval [L,U ], with the boundary conditions

π(L) = 1, π(U) = 0. (4.7)

The equation (4.6) is linear and of second order, so it is expected that all solutions to

this equation can be written as a linear combination of two independent particular

solutions. One solution is obvious: the function π(S) = S must satisfy (4.6) because

it is clearly the pricing function of a self-financing portfolio, and it is easy to verify

that it is indeed a solution. We need a second solution to form a linear combination

with the first one that satisfies the boundary conditions (4.7). Let us try a solution

of the form π(S) = Sα. Inserting this in the Black-Scholes PDE leads to

0 = 1
2σ

2S2 · α(α− 1)Sα−2 + rS · αSα−1 − rSα = (r + 1
2σ

2α)(α− 1)Sα

so that π(S) = Sα is a solution when α = 1 (as expected) and when α = −2r/σ2.
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Figure 4.1: Barrier option value as a function of the value of the underlying. The parameter
values are as follows: lower barrier L = 50, upper barrier U = 150, interest rate r = 2%.
Three different values of the volatility σ are used, namely 0.2, 0.15 and 0.1.

Abbreviate 2r/σ2 as γ. Any function of the form π(S) = c1S + c2S
−γ where c1

and c2 are constants is a solution of (4.6). The constants c1 and c2 must be chosen

to satisfy the boundary conditions; that is, we must have c1L + c2L
−γ = 1 and

c1U + c2U
−γ = 0. This leads to

c1 = − Lγ

Uγ+1 − Lγ+1
, c2 =

LγUγ+1

Uγ+1 − Lγ+1
.

Therefore the price of the option is

π(t, S) =
Lγ

Uγ+1 − Lγ+1

[(
U

S

)γ+1

− 1

]
S (4.8)

for all t ≥ 0 and S ∈ [L,U ].

The value of the option is justified from the point of view of the seller, because the

amount that is received is enough to set up a self-financing portfolio which will cover

the liabilities generated by the contract, irrespective of whether the lower barrier

or the higher barrier will be hit first. The price is also justified from the buyer’s

perspective, because the contract allows the buyer to go short in the replicating

portfolio, which will generate an amount at time 0 that is exactly equal to the

option price as computed above. As soon as one of the barriers is hit, the position

will be unwound without any remaining liabilities; it doesn’t matter that it is not

known at what time this will occur. Of course, all of this depends on the standard

assumptions of frictionless trading.
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4.1.2 The equivalent martingale measure

The numéraire-dependent pricing formula is given in (3.25). To compute prices of

contingent claims on the basis of this formula, it is easiest to work with a model

that is formulated under the equivalent martingale measure associated to the chosen

numéraire; cf. (3.77). Suppose that we have such a model, and suppose that we want

to price a contract that has a single payoff at time T , defined by CT = f(XT ) where

f(x) is a given function. To determine the expected value of CT /NT under Q given

information at time t, we solve the equation (3.77) with a given value of Xt at

time t. In some cases it is possible to obtain an analytical solution. If not, an

approximation for EQ
t [F (XT )/NT ] can be obtained by simulating a large number

of scenarios of (3.77) taking W̃t as a standard Wiener process, and computing the

average of the obtained values of f(XT )/NT . This is the Monte Carlo method which

is discussed more extensively in Chapter 7. A case in which an analytical solution

can be obtained is shown in the following example.

Example 4.1.2 Consider the pricing of a digital option in the standard Black-

Scholes model. The model is given by (4.3) as before. A digital option with strike

K is given by the payoff function

F (S) = 1S>K (4.9)

which means that one unit will be paid when the price of the underlying at maturity

exceeds K, and otherwise nothing will be paid. Under the equivalent martingale

measure that corresponds to taking B as a numéraire, the standard Black-Scholes

model is written as (3.82) where the driving process Wt is a Brownian motion under

QB. The price of the digital option at time 0 can now be computed from the

numéraire-dependent pricing formula (3.25) in the following way:

C0 = E
[1ST>K
erT

]
= e−rTQ(ST > K) = e−rTQ(logST > logK) =

= e−rTP (logS0 + (r − 1
2σ

2)T + σ
√
T Z > logK) =

= e−rTP

(
Z >

− log(S0/K)− (r − 1
2σ

2)T

σ
√
T

)
= e−rTΦ(d2) (4.10)

where Z is a standard normal variable, P is the probability associated with Z (not

to be confused with the “objective” measure P), Φ(·) is the cumulative normal

distribution function, and the constant d2 is defined as in (3.50b). At time t, the

pricing formula is the same except that T is replaced by T − t and S0 by St.
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4.1.3 The pricing kernel method

The pricing kernel method was discussed in Section 3.5.3. The method requires an

explicit specification of the market prices of risk associated to the driving Brownian

motions that appear in a given model. However, as will be shown in the example

below, it may happen that the price of risk can be absorbed into model parameters.

The computation can then be carried out as if the price of risk is zero, but within

a model in which certain parameters have been replaced by risk-adjusted versions.

Example 4.1.3 Consider the valuation of bonds in the Vasicek model. The model

is given by the state equation

dXt = a(b−Xt) dt+ σ dWt (4.11)

together with the following specifications of the short rate and the market price of

risk:

r(t, x) = x, λ(t, x) = λ (constant). (4.12)

The product that we consider is a default-free zero-coupon bond; it pays one unit

of currency at a given time T . The value of this contract at time 0, according to

the Vasicek model, is given by

πT (0, x) = E[KT · 1 | X0 = x0] (4.13)

where the pricing kernel process is determined by (writing rt := r(t,Xt), so that

rt = Xt)

dKt = −Kt(rt dt+ λ dWt), K0 = 1. (4.14)

The Black-Scholes partial differential equation associated to the Vasicek model is

− ∂πT
∂t

= 1
2σ

2 ∂
2πT
∂x2

+ [a(b− x)− λσ]
∂πT
∂x
− xπT . (4.15)

This shows that the Vasicek bond pricing model, which appears at first to have four

parameters, actually has only three (namely a, σ, and ab − λσ). For instance, the

model with parameters (a, b, σ, λ) leads to the same bond prices as the model with

parameters (a, b− λσ/a, σ, 0). We can therefore simplify the calculations by taking

λ = 0, keeping in mind that the interpretation of the parameter b is then that it

represents a “risk-adjusted” average level of the short rate, rather than the actual

average level. Now, from (4.11) and (4.14) we obtain

d

[
logKt

Xt

]
=

[
0 −1

0 −a

]
+

[
0

ab

]
+

[
0

σ

]
dWt. (4.16)
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This is a linear stochastic differential equation (see Section 2.6). After some manip-

ulation, one finds1

E[logKT | X0 = r0] = −1− e−aT

a
(r0 − b)− bT (4.17)

and

var[logKT | X0 = x0] =
σ2

a2

(
T − 2

1− e−aT

a
+

1− e−2aT

2a

)
. (4.18)

Using the standard rule for the expectation of a lognormally distributed variable,

we find

πT (0, r0) = exp

(
−

[(
b− σ2

2a2

)
T +

(
r0 − b+

σ2

a2

)1− e−aT

a
− σ2

2a2

1− e−2aT

2a

])
.

(4.19)

Current time is taken to be 0 in the above formula, but the choice of the initial

time in the Vasicek model is arbitrary, so that the formula above also holds for

πT (t, xt) except that in the right hand side x0 must be replaced by xt and T must

be replaced by T−t. One way to check the correctness of the calculations is to verify

that the function πT (t, x) satisfies the Vasicek-Black-Scholes equation (4.15) and the

boundary condition πT (T, x) = 1. The equation (4.19) describes the term structure

as a linear combination of a constant and two functions of time to maturity; it

therefore usually does not provide a very good fit to the actually observed term

structure.

4.2 Five derivations of the Black-Scholes formula

The pricing formula (3.50) for a call option appeared in 1973 in a paper by Fischer

Black and Myron Scholes that was published in the Journal of Political Economy.

The developments leading up to this paper have been discussed in Section 1.1. Let

the price of the underlying asset at time t be denoted by St, and take the current

time to be t = 0 so that the current value of the underlying asset is S0. Consider a

call option with time of maturity T and strike K; the payoff of this option at time

T is then given by CT = max(ST −K, 0). Suppose that the price of the underlying

asset follows the stochastic differential equation

dSt = µSt dt+ σSt dWt (4.20)

where µ and σ are constants, and assume there is a constant interest rate r that

applies to all maturities. On the basis of these assumptions, Black and Scholes

1Detailed calculations are shown in Section 4.4.3.
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argued that the fair price to be paid for the option at time t = 0 is given by

C0 = S0Φ(d1)− e−rTKΦ(d2) (4.21a)

where Φ is the cumulative normal distribution function and the numbers d1 and d2

are given by

d1 =
log(S0/K) + (r + 1

2σ
2)T

σ
√
T

, d2 =
log(S0/K) + (r − 1

2σ
2)T

σ
√
T

. (4.21b)

The publication of this formula is considered to mark the birth of modern mathe-

matical finance. In honor of the historical formula above, five derivations of it are

presented below.

In their Nobel prize winning paper, Black and Scholes derive the partial dif-

ferential equation (4.24) below from the premise that, in the absence of arbitrage,

an instantaneously riskless combination of assets must earn the riskless return (cf.

Thm. 3.2.6). They then solve the PDE by applying a logarithmic substitution to

transform the equation to one that can be found in textbooks. The equation they

arrive at is the so called heat equation that was first studied by Fourier.2 The first

derivation below follows this line of reasoning and shows how Fourier might have

solved the Black-Scholes equation. The second derivation uses the pricing kernel

method, and the last three are all based on the numéraire-dependent pricing for-

mula, with different choices of the numéraire.

The following integral identity will be used in most of the derivations to be

presented below:
1√
2π

∫ ∞
a

e−
1
2
x2+bx dx = e

1
2
b2Φ(b− a) (4.22)

where a and b are constants. A special case is

1√
2π

∫ ∞
−∞

e−
1
2
x2+bx dx = e

1
2
b2 . (4.23)

The identity is obtained as follows:

1√
2π

∫ ∞
a

e−
1
2
x2+bx dx =

e
1
2
b2

√
2π

∫ ∞
a

e−
1
2

(x−b)2
dx

y = x− b
=

=
e

1
2
b2

√
2π

∫ ∞
a−b

e−
1
2
y2
dy = e

1
2
b2(1− Φ(a− b)) =

= e
1
2
b2Φ(b− a).

2Joseph Fourier (1768–1830), French mathematician and physicist.
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4.2.1 Solving the Black-Scholes equation

Start from the partial differential equation

− ∂π

∂t
(t, S) = 1

2σ
2S2 ∂

2π

∂S2
(t, S) + rS

∂π

∂S
(t, S)− rπ(t, S). (4.24)

We want to solve this together with the boundary condition

π(T, S) = max(S −K, 0). (4.25)

The first step is to simplify the equation somewhat by a change of the independent

variables. We introduce new variables x = logS and τ = T − t and define a new

unknown function by

F (τ, x) = π(T − τ, ex). (4.26)

In terms of the new variables, the partial differential equation (4.24) becomes (in

shorthand notation)

∂F

∂τ
= (r − 1

2σ
2)
∂F

∂x
+ 1

2σ
2∂

2F

∂x2
− rF (4.27)

whereas the boundary condition (4.25) is transformed to

F (0, x) = max(ex −K, 0). (4.28)

Our task is to find a solution of the PDE (4.27) that satisfies the boundary condition

(4.28). The equation (4.27) by itself, without the boundary condition, should have

many solutions since we should be able to accommodate many possible payoffs that

may take place at time T , not just the one represented by (4.25) or equivalently

(4.28). To start with, note that the PDE (4.27) is linear: if F1(τ, x) and F2(τ, x)

are solutions, then so is aF1(τ, x) + bF2(τ, x) for any constants a and b. To find

particular solutions, let us try functions of the form

F (τ, x) = g(τ)h(x).

Inserting this trial solution into (4.27), we find

g′(τ)h(x) = (r − 1
2σ

2)g(τ)h′(x) + 1
2σ

2g(τ)h′′(x)− rg(τ)h(x)

or in other words

g′(τ)

g(τ)
=

(r − 1
2σ

2)h′(x) + 1
2σ

2h′′(x)− rh(x)

h(x)
. (4.29)
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On the left hand side we have a function of τ , on the right hand side a function of

x; they can only be equal if both are constant, say equal to c. In this way we obtain

ordinary differential equations for the two functions g(τ) and h(x). Both are linear

equations with constant coefficients. The differential equation

g′(τ)

g(τ)
= c

has g(τ) = ecτ as a solution. Inserting h(x) = eλx, we find that the right hand side

of (4.29) is equal to c if the constant λ is such that

(r − 1
2σ

2)λ+ 1
2σ

2λ2 − r = c.

Therefore, the function

F (τ, x) = exp
((

(r − 1
2σ

2)λ+ 1
2σ

2λ2 − r
)
τ + λx

)
(4.30)

is, for any constant λ, a solution of the partial differential equation (4.27). By the

linearity property of (4.27), any linear combination of solutions of this type is again

a solution. This gives us arbitrarily many degrees of freedom; it is not immediately

clear however how to use these to satisfy the condition (4.28), which should hold for

all x and which therefore represents an infinite number of constraints. To proceed,

first note that the function in (4.30) may be written as

F (τ, x) = e−rτe
1
2
σ2λ2τe(x+(r− 1

2
σ2)τ)λ. (4.31)

Using (4.23), we can write

e
1
2
σ2λ2τ =

1√
2π

∫ ∞
−∞

e−
1
2
z2+σλ

√
τz dz

so that

F (τ, x) =
e−rτ√

2π

∫ ∞
−∞

e−
1
2
z2
eλ(x+(r− 1

2
σ2)τ+σ

√
τz) dz. (4.32)

Due to the linearity of (4.27), we can conclude that a solution of (4.27) is given by

any expression of the form

G(τ, x) =
e−rτ√

2π

∫ ∞
−∞

e−
1
2
z2
φ
(
x+ (r − 1

2σ
2)τ + σ

√
τz
)
dz (4.33)

where the function φ is defined by

φ(y) =
N∑
i=1

cie
λiy (4.34)
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and the ci’s, the λi’s, and the number N can be chosen arbitrarily. The jump from

the finite to the infinite can now be made by dropping (4.34) as a constraint and

looking at (4.33), where φ is “any” function, as a representation of solutions of the

partial differential equation (4.27).

Having parametrized the solutions of the PDE (4.27) in terms of an arbitrary

function, we can now hope to be able to satisfy the boundary condition (4.28). We

have

G(0, x) =
1√
2π

∫ ∞
−∞

e−
1
2
z2
φ(x) dz = φ(x).

Therefore, the constraint (4.28) is satisfied by taking

φ(x) = max(ex −K, 0)

and the corresponding solution is

G(τ, x) =
e−rτ√

2π

∫ ∞
−∞

e−
1
2
z2

max
(

exp
(
x+ (r − 1

2σ
2)τ + σ

√
τz
)
−K, 0

)
dz. (4.35)

This may already be viewed as an explicit expression. An evaluation in terms of the

cumulative normal distribution function can be carried out as follows. Noting that

exp
(
x+ (r − 1

2σ
2)τ + σ

√
τz
)
−K ≥ 0 ⇔ z ≥ −d

where

d :=
x− logK + (r − 1

2σ
2)τ

σ
√
τ

we can write, using (4.22),

G(τ, x) =
e−rτ√

2π

∫ ∞
−d

e−
1
2
z2(

exp
(
x+ (r − 1

2σ
2)τ + σ

√
τz
)
−K

)
dz =

=
ex−

1
2
σ2τ

√
2π

∫ ∞
−d

e−
1
2
z2+σ

√
τz dz − e−rτK√

2π

∫ ∞
−d

e−
1
2
z2
dz =

= exΦ(d+ σ
√
τ)− e−rτKΦ(d). (4.36)

The rigor of the reasoning we have applied, in particular dropping the constraint

(4.34), may be subject to debate. However, it is possible to show by direct calculation

(see Exc. 3.3) that the function above is indeed a solution of the partial differential

equation (4.27) with the boundary condition (4.28). An expression for the option

price at time 0 in terms of the initial stock price is obtained by setting τ = T and

x = logS0. We arrive at the Black-Scholes formula (4.21).
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4.2.2 The pricing kernel method

The pricing kernel for the Black-Scholes model is given by

dK = −rK dt− µ− r
σ

K dW, K0 = 1.

This is a geometric Brownian motion and so its solution can be written down ex-

plicitly:

Kt = exp
[(
−r − 1

2

(µ− r
σ

)2)
t− µ− r

σ
Wt

]
.

In terms of the pricing kernel, the price of the call option at time 0 is given by

C0 = E[KTCT ] = E[KT max(ST −K, 0)].

Since St = S0 exp
(
(µ− 1

2σ
2)t+ σWt

)
, we find

C0 = E
[
exp
(
(−r − 1

2(µ− r)2/σ2)T − ((µ− r)/σ)WT

)
·

·max
(
S0 exp

((
µ− 1

2σ
2
)
T + σWT

)
−K, 0

)]
=

=
1√
2π

∫ ∞
−∞

e−
1
2
z2

exp
(
(−r − 1

2(µ− r)2/σ2)T − ((µ− r)/σ)
√
Tz
)
·

·max
(
S0 exp

((
µ− 1

2σ
2
)
T + σ

√
Tz
)
−K, 0

)
dz.

The first two factors in the integrand above together form an exponential function

with exponent

−1
2z

2 + (−r − 1
2(µ− r)2/σ2)T − ((µ− r)/σ)

√
Tz = −rT − 1

2

(
z +

µ− r
σ

√
T
)2
.

This suggests a change of variable y = z+ µ−r
σ

√
T . The exponent in the third factor

of the integrand is then transformed to

(µ− 1
2σ

2)T + σ
√
T
(
y − µ− r

σ

√
T
)

= (r − 1
2σ

2)T + σ
√
Ty.

We obtain

C0 =
e−rT√

2π

∫ ∞
−∞

e−
1
2
y2

max
(
S0 exp

((
r − 1

2σ
2
)
T + σ

√
Ty
)
−K, 0

)
dy.

This is the same as the right hand side of (4.35) with x = logS0 and τ = T . We

therefore again arrive at the Black-Scholes formula.
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4.2.3 Taking the bond as a numéraire

The price of the call option can be obtained from the formula

C0

B0
= EQB max(ST −K, 0)

BT
(4.37)

where QB is the equivalent martingale measure that corresponds to taking the bond

(which in the Black-Scholes model is the same as the money market account) as

a numéraire. Since the expression above involves an expectation under QB, it is

convenient to work with the specification of the Black-Scholes model under the

same measure. This specification is given in (3.81). In particular, the evolution of

the stock price is described by

dS = rS dt+ σS dW

where W is a Brownian motion under the risk-neutral measure QB. Since S is a

traded asset, the fact that the drift term is of the form rS also follows from the rule

(3.80). From the standard solution formula for geometric Brownian motion, we find

ST = S0 exp
(
(r − 1

2σ
2)T + σWT

)
. (4.38)

Under QB, the stochastic variable WT follows a normal distribution with expectation

0 and variance T . Consequently, the pricing formula (4.37) can be written more

explicitly as

C0 =
e−rT√

2π

∫ ∞
−∞

e−
1
2
z2

max
(
S0e

(r− 1
2
σ2)T+σ

√
Tz −K, 0

)
dz (4.39)

which is the same as the right hand side of (4.35) with x = logS0 and τ = T . Once

more, we arrive at the Black-Scholes formula.

4.2.4 Taking the stock as a numéraire

In the Black-Scholes model, the stock price is always positive so that the stock can

be selected as a numéraire. Therefore, the price of the call option can be obtained

from the formula

C0

S0
= EQS max(ST −K, 0)

ST
= EQS max(1− S−1

T K, 0) (4.40)

where QS is the equivalent martingale measure that corresponds to taking the stock

as a numéraire. In this case it is convenient to work with a specification of the

model under QS . This specification is given in (3.82). This specification can be

obtained from the formula (3.79). Alternatively (and somewhat more laboriously),
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starting from the original specification of the Black-Scholes model under the real-

world measure P (driven by a process W that is a Brownian motion under P), the

Girsanov process λS that is such that the process W̃t defined by W̃0 = 0 and

dW̃ = λS dt+ dW

is a Brownian motion under QS can be determined by noting that the process Bt/St

must be a martingale under QS , and

d
B

S
=

1

S
dB − B

S2
dS +

B

S3
d[S, S] =

= (r − µ+ σ2)
B

S
dt− σ B

S
dW

= −σ B
S

(µ− r − σ2

σ
dt+ dW

)
so that we find

λS =
µ− r − σ2

σ
.

Inserting this in the formulation of the Black-Scholes model under P, we also arrive

at (3.82).

In particular the evolution of the stock price under QS is given by

dS = (r + σ2)S dt+ σS dW (4.41)

where W denotes a Brownian motion under QS . From the standard formula for

geometric Brownian motion, we have

ST = S0 exp
(
(r + 1

2σ
2)T + σWT

)
. (4.42)

Under QS , the stochastic variable WT follows a normal distribution with expectation

0 and variance T . Consequently, the pricing formula (4.37) can be written more

explicitly as

C0 =
S0√
2π

∫ ∞
−∞

e−
1
2
z2

max
(
1− S−1

0 e−(r+ 1
2
σ2)T−σ

√
TzK, 0

)
dz. (4.43)

A change of variable y = z + σ
√
T would lead us to (4.39). Alternatively, we can

evaluate the integral directly; the computation is essentially the same as the one

that was applied to evaluate the right hand side of (4.35). Note that

1− S−1
0 e−(r+ 1

2
σ2)T−σ

√
T zK ≥ 0 ⇔ z ≥ −d
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where d is defined by

d =
log(S0/K) + (r + 1

2σ
2)T

σ
√
T

.

Therefore, we obtain

C0 =
S0√
2π

∫ ∞
−d

e−
1
2
z2
dz − K√

2π
e−(r+ 1

2
σ2)T

∫ ∞
−d

e−
1
2
z2−σ

√
Tz dz

= S0Φ(d1)− e−rTKΦ(d2)

where d1 and d2 are defined as in (4.21b); in particular, d1 = d.

4.2.5 Splitting the payoff

The payoff of the call option can be split into two parts as follows:

max(ST −K, 0) = 1{ST−K≥0} (ST −K) = 1{ST−K≥0} ST − 1{ST−K≥0}K.

Define

CsT = 1{ST−K≥0} ST (4.44)

CbT = 1{ST−K≥0}K (4.45)

and let Cs0 and Cb0 denotes the prices at time 0 of the contracts that have the above

payoffs at time T . Taking the stock as a numéraire to determine Cs0 , we find

Cs0
S0

= EQS C
s
T

ST
= EQS 1{ST−K≥0} = QS(ST ≥ K)

where QS(ST ≥ K) denotes the probability of the event ST ≥ K under the measure

QS . To determine the price of Cb0, take the bond as a numéraire; we find

Cb0
B0

= EQB C
b
T

BT
=

K

BT
EQB 1{ST−K≥0} =

K

BT
QB(ST ≥ K).

Since we must have C0 = Cs0 − Cb0, we obtain

C0 = S0 QS(ST ≥ K)− e−rTK QB(ST ≥ K). (4.46)

It remains to determine the two probabilities. From (4.38) and (4.42), it follows

that

QB(ST ≥ K) = P
(
S0 exp

(
(r − 1

2σ
2)T + σ

√
TZ
)
≥ K

)
and

QS(ST ≥ K) = P
(
S0 exp

(
(r + 1

2σ
2)T + σ

√
TZ
)
≥ K

)
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where Z is a standard normal variable and P denotes the probability associated

with Z (not to be confused with the “objective” measure P). We find

QB(ST ≥ K) = Φ(d2), QS(ST ≥ K) = Φ(d1)

and again the Black-Scholes formula appears.

4.2.6 Comments

The pricing kernel method can alternatively be viewed as an application of the

numéraire-dependent pricing formula, taking as a numéraire the portfolio whose

value is given by

Vt = K−1
t = exp

[(
r + 1

2

(µ− r
σ

)2)
t+

µ− r
σ

Wt

]
.

Since this value process is such that KtVt is a P-martingale (clearly, because KtVt

is constant), it is the value of a self-financing portfolio (see Section 3.5.3). In fact,

it can be verified that Vt is the value at time t of a fixed-mix portfolio that starts

at V0 = 1 and that invests a fraction (µ− r)/σ2 in stocks. Among all self-financing

portfolio strategies, this one has a special position in that it optimizes the expected

growth rate.3 In conclusion, all of the presented methods except the first one are

applications of the numéraire-dependent pricing formula.

The option defined by the payoff (4.44) is called an asset-or-nothing option. The

payoff (4.45) can only take two values, one of which is zero; a contract of this type

is called a digital option.

The fifth method is the only one that does not require the integral identity (4.22).

On the other hand, the other methods are more general: they lead to an integral

expression

C0 =
e−rT√

2π

∫ ∞
−∞

e−
1
2
z2
f
(
e(r− 1

2
σ2)T+σ

√
TzS0

)
dz (4.47)

where f can be any payoff function that determines the contract value CT = f(ST )

at the time of maturity T . When f is a piecewise linear function, such as in the case

of call and put options, the above integral can be evaluated in terms of the cumu-

lative normal distribution function. In other cases, the integral may be evaluated

numerically.

A situation in which the payoff function f is not piecewise linear arises in the

pricing of compound options, such as the following. A “call-on-a-call” is a contract

that gives the holder the right to buy at time T1, for a price K1 that is already

determined at the initiation of the contract, a call option with strike K2 that expires

3This is not a special property of the Black-Scholes model. It is true in general that the inverse
of the pricing kernel is the value of the growth-optimal portfolio.
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at time T2 > T1. The value of the call option at time T1 is given, as a function of

ST1 , by the Black-Scholes formula. Write this function as f1(ST1). Then the call-on-

a-call contract may be viewed as a contract that matures at time T1 with a payoff

function defined by f(ST1) = max(f1(ST1)−K1, 0). The value of this contract can

be obtained from the integral expression (4.47). Compound options are discussed

more extensively in Section 4.3.5.

4.3 Variations

4.3.1 Multiple payoffs

A contract may specify payments at more than one date. For instance, a standard

mortgage contract is paid back in monthly instalments during a long period of time.

The valuation of the stream of mortgage payments is a relatively simple matter if it

is assumed that payments will continue during the full running time of the contract,

and the size of the payments is fixed in advance, but there are also contracts in

which payments may vary in time and then the valuation can be quite a bit harder.

In principle though, the pricing formula for a series of payoffs CTi at times T1, . . . , Tn

is a straightforward extension of the numéraire-dependent pricing formula (3.25):

C0 = N0

n∑
i=1

EQ CTi
NTi

. (4.48)

In the special case of constant interest rates, we can take the money market account

Mt = ert as the numéraire; then

C0 =
n∑
i=1

e−rTiEQ[CTi ]. (4.49)

This shows the NDPF as a generalized net present value formula.

4.3.2 Random time of expiry

In a standard European option, the time of expiry is fixed as part of the contract.

However, there are also situations in which the payoff occurs at a time which cannot

be predicted in advance. For instance, in the perpetual double barrier option that

was discussed in Example 4.1.1, the contract expires when the price of the under-

lying assets first reaches one of the two boundaries. In this situation, the source of

randomness in the time of expiry is the same as the one that generates the random-

ness in the payoff, so that there is in fact no new uncertainty; the valuation problem

can be solved by adjusting the boundary conditions for the Black-Scholes partial

differential equation, whereas the PDE itself remains the same. As another exam-
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ple, consider the case of a reverse mortgage contract. In a usual mortgage contract,

the debt at the time of initiation is high, and the amount of the debt is gradually

decreased in time through regular repayments. In a reverse mortgage contract, the

debt is zero or small in the beginning but is increasing in time; the client (usually

at an advanced age) essentially takes out successive loans, to support a higher level

of spending than would otherwise be possible. The debt will be settled from the

proceeds of selling the home at the time at which the owner moves out, typically

by admission to long-term care or to eternity. It is not known in advance when this

will happen. The source of randomness in the time of expiry is in this case of a

non-financial nature; in absence of sufficient data to establish an associated price

of risk or more directly a probability distribution under a risk-neutral measure, the

situation needs to be viewed as constituting an incomplete market.

In a credit default swap, the buyer pays regular amounts to the seller during a

fixed period, in return for the seller’s commitment to pay a compensation amount

to the buyer when, within this period, a credit event of a certain type (specified in

the contract) occurs. Such a credit event could for instance be a default of a spe-

cific company, or the occurrence of a certain number of defaults within a designated

group of companies. When indeed a credit event takes place during the contract

period, the series of contributions from the buyer to the seller is terminated. In

the case of such contracts, the time at which payoff takes place is again random,

but there may be enough trading in related instruments to establish a risk-neutral

probability distribution. Consider, in general, a situation in which a contract pro-

vides a payoff Cτ = F (Xτ ), where τ is a random time, Xτ is the value of the state

variable, and F is a payoff function. Suppose that a description is available for the

joint distribution of the random time τ and the state process Xt under a pricing

measure Q corresponding to a chosen numéraire Nt. The option with random time

of expiry could be approximated as an option with multiple payoffs with payoff times

∆t, 2∆t, . . . , and with payoffs that are zero except at time k∆t, where k is such that

(k − 1)∆t < τ ≤ k∆t. According to (4.48), the time-0 value of the option is then

given by

C0 = N0

n∑
k=1

EQ

[
1(k−1)∆t<τ≤k∆t

F (Xtk)

Ntk

]
where n = T/∆t and T is the length of the contract period (supposed to be a

multiple of ∆t). Letting the time step ∆t tend to 0, one can write

C0

N0
= lim

∆t↓0
EQ

n∑
k=1

[
1(k−1)∆t<τ≤k∆t

F (Xtk)

Ntk

]
= EQ

[
1τ≤T

Cτ
Nτ

]
(4.50)

which represents the option value in a form that is reminiscent of the NDPF. If it

assumed that the random variable τ has a density fτ (t) under Q (meaning that the
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probability of the event t ≤ τ < t+ ∆t under Q is approximately equal to fτ (t)∆t,

for any 0 ≤ t ≤ T ), then one can also write

C0

N0
=

∫ T

0
EQ

[
Ct
Nt

∣∣∣∣∣ τ = t

]
fτ (t) dt.

When there is no dependence (under Q) between the relative payoff and the time of

expiry, then the conditioning in the expectation within the integral can be dropped,

and we get a weighted average of regular option prices.

4.3.3 Path-dependent options

Sometimes the payoff of an option is defined not just in terms of the value of the

underlying at the time of expiry, but in terms of the values of the underlying at

several time points in the period up to expiry. The option is then said to path-

dependent. For instance, an Asian call option is, by definition, a contract that pays

the amount

CT = max
( 1

n

n∑
i=1

STi −K, 0
)
.

at time T , with T1 < T2 < Tn = T . A straightforward way to price such an option

is to apply the Monte Carlo method with Euler discretization. One just needs to

make sure that the sample points Ti are part of the time grid, and that the relevant

cumulative sum is kept in computer memory and updated during time stepping when

appropriate. Since the notion of “state variable”, from a programming perspective,

is just “variable that needs to be updated during the time stepping loop”, this means

that in fact the cumulative sum is given the status of an additional state variable.

In other words, by suitably extending the set of state variables, the option payoff at

the time of expiry becomes a function of the extended state at expiry only; in other

words, the path dependence is removed.

In the case of the Asian call, the state variables that are added undergo discrete

changes at deterministic times, so their evolution cannot be described in terms of

stochastic differential equations driven by Brownian motion. It is not difficult to

extend the modeling framework so that the Asian call or similar products can be

included. The idea of state extension can however also be illustrated within the

Brownian SDE framework, if we consider a “continuous Asian call option” with

payoff

CT = max
( 1

T

∫ T

0
St dt−K, 0

)
.

In this case, the payoff in fact depends on the entire path of the underlying up to

the time of maturity, rather than on its values at a finite set of sample points. Such

an option cannot be realized in practice, but it could be viewed as an approximation
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of an Asian option with a high density of sample points. The state dependence can

be accommodated by introducing a new state variable At which satisfies

dAt = St dt, A0 = 0. (4.51)

The option payoff is then given by

CT = max
(

1
TAT −K, 0

)
.

When also an SDE is given for St and the state vector Xt is defined as the vector

with components St and At, then the resulting model appears as a standard state

space model with the option payoff given as a function of the state variable at time

T . There is no explicit expression for the density of AT , so the option price at time

0 must be evaluated by Monte Carlo. If the geometric average is used instead, then

the option price can be computed analytically.

4.3.4 Costs and dividends

In the theory we assume that assets are self-financing, but, in the real world, stocks

often generate dividends, and commodities typically bring storage costs. To fit assets

that generate costs and dividends into the theory, a strategy that may be applied

is to specify the way in which the dividends are used (for instance they could be

placed in a savings account), or, in the case of costs, how these are financed (for

instance, the required funds may be taken from a savings account). In this way, the

given asset becomes part of a self-financing portfolio. Assuming a complete market,

the distribution of the asset under a suitable pricing measure can then be derived.

To illustrate, suppose that St is the price at time t of a dividend-paying stock,

and assume for convenience that dividend is paid continuously at a fixed rate, as

a percentage of the stock price. Suppose that the stock price follows the usual

Black-Scholes model

dSt = µSt dt+ σSt dWt

dBt = rBt dt.

The assumption that the stock pays dividends implies that St is not the price of

a self-financing portfolio. Consequently, one cannot argue that the quotient St/Bt

must be a martingale under the risk-neutral measure, and it would not be correct

that the drift term in the SDE for St under the risk-neutral measure is given by rSt.

Instead, one can do the following.

Since it is assumed that the stock pays a fixed-percentage dividend continuously,

the dividend received from one unit of the stock during the interval from t to t+ ∆t
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is qSt∆t where q is a constant. Assume that the dividends arising from one unit

of the stock are placed into a savings account, and let Dt denote the value of this

account. The value in the account changes from time t to time t+∆t due to interest

that is received as well as to dividends that flow into the account. Up to first order

in ∆t, one can write

Dt+∆t = Dt + rDt∆t+ qSt∆t.

This leads to the continuous-time equation

dDt = (rDt + qSt) dt.

Contrary to the asset St, the portfolio Vt := St + Dt is self-financing. Therefore,

under the risk-neutral measure QB, one has

dVt = rVt dt+ σSt dW
B
t .

From the relation dVt = dSt + dDt it follows that dSt = dVt − dDt. Therefore,

dSt = rVt dt+ σSt dW
B
t − (rDt + qSt) dt

= r(St +Dt) dt+ σSt dW
B
t − (rDt + qSt) dt

= (r − q)St dt+ σSt dW
B
t .

Another destination for the dividends could be chosen. For instance, they might

be re-invested into the stock. Let Vt be the value at time t of a portfolio which is

completely invested in the stock with price St, with reinvestment of dividends. The

change in value of this portfolio between time t and time t+∆t is due to the change

in price of the stock and to dividend received. Note that Vt/St is the number of

units of the stock. The dividend received in the period from t to t+ ∆t is (to first

order) equal to qVt. We have for small ∆t:

Vt+∆t = Vt +
Vt
St

(
St+∆t − St

)
+ qVt∆t.

The corresponding continuous-time equation is:

dVt =
Vt
St

(
dSt + qSt dt

)
= (µ+ q)Vt dt+ σVt dWt.

The portfolio Vt is self-financing, so under QB:

dVt = rVt dt+ σVt dW
B
t .
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From dVt = (Vt/St)(dSt + qSt dt), we have dSt = (St/Vt)(dVt − qVt dt). Therefore

dSt = (r − q)St dt+ σSt dW
B
t

which is the same as the result that was obtained before, as it should be.

After obtaining the SDE under the risk-neutral measure for the dividend-paying

asset, pricing formulas for options can be derived. For instance, the formula for a

standard European call option written on St becomes

C0 = e−qTS0Φ(d1)− e−rTKΦ(d2)

d1 =
log(S0/K) + (r − q + 1

2σ
2)T

σ
√
T

, d2 = d1 − σ
√
T .

This is similar to the Black-Scholes formula, with redefined parameters. When

q = 0, the standard formula is recovered.

4.3.5 Compound options

A compound option is an “option on an option”. For instance, a standard put

option gives the holder the right to buy the underlying asset at a given time T for

a predetermined price K. Instead, one could also think of a contract that gives the

holder the right to buy, at time T1, for a predetermined price K1, a put option on a

given underlying asset that matures at time T2 and has strike K2. This is a “put on

a put”. Likewise, one could have a put on a call, a call on a put, and so on. Besides

such fanciful products, there are many contracts that can be modeled as compound

options. Here are some examples:

• options that give the holder the right to exercise at one or more time points

before expiry (Bermudan options)

• forward start options (for instance a call option that will start at time T1 with

a strike determined at that time)

• Asian options with a finite number of sample points.

There is a universal principle by which all compund options can be priced. The

principle states that one should work backwards from the time of expiry, using the

rule

payoff of option starting at Ti−1 = value of option starting at Ti.

The application of this principle is illustrated in the following examples.

Example 4.3.1 Consider a call option that will start at time T1 > 0 and that will

expire at time T2 > T1, with a strike given by the value of the underlying at time T1.
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This is a particular case of a forward start option. Let the value of the underlying at

time t be given by St, and assume that the Black-Scholes model holds. To determine

the value of the option at time 0, first determine its value at time T1. We have

CT1 = ST1Φ(d1)− e−r(T2−T1)ST1Φ(d2)

with (since K = ST1)

d1 =
r + 1

2σ
2

σ

√
T2 − T1 , d2 =

r − 1
2σ

2

σ

√
T2 − T1 .

Therefore,

CT1 = ST1

[
Φ(d1)− e−r(T2−T1)Φ(d2)

]
where d1 and d2 are deterministic. So, for t < T1,

Ct = St
[
Φ(d1)− e−r(T2−T1)Φ(d2)

]
Another way of writing this is

Ct = (C0/S0)St, 0 ≤ t ≤ T1

where C0 is the value at time 0 of a call option with strike K = S0 and maturity

T2 − T1. Therefore, the value of the forward start option up to time T1 is just a

constant multiple of the price of the underlying. For t ≥ T1, the option value is that

of a call option with strike ST1 and maturity T2 − t.

Example 4.3.2 As another example of a product that can be modeled as a com-

pound option, consider a Bermudan option with two exercise dates. Specifically,

suppose we have a put option with strike K that can be exercised at times T1 and

at time T2 > T1. At time T1, the value of the option is

CT1 = max
(
max(K − ST1 , 0), Ccv

T1

)
= max

(
K − ST1 , C

cv
T1

)
where Ccv

T1
(“cv” for “continuation value”) is the value at T1 of a put option with

strike K maturing at time T2. The time-0 value of the Bermudan option is the same

as the time-0 value of a contract that matures at T1 with payoff CT1 . This contract

is a standard European option, be it with a somewhat complicated payoff function.

Within the Black-Scholes model, the payoff at time T1 can be given in analytic form.

To compute the value at time 0, a numerical technique has to be used. The process

can be repeated when there are more than two exercise dates.
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4.4 Further worked examples

4.4.1 The perpetual American put

The perpetual American put is a claim that can be exercised at any time to produce

a payoff max(K −St, 0), where K is the strike and St is the value of the underlying

at the time of exercise. Assume that we are in the standard framework of the Black-

Scholes model. The holder of the option is likely to follow an exercise strategy which

maximizes the option’s value. One can expect that for high values of St, exercise is

not optimal; in particular if St > K then exercise would clearly be useless. On the

other hand, for low values of St it may be attractive to exercise the option. There

is no reason why the exercise strategy should depend on calendar time, and so the

optimal strategy is expected to be of the following form: do not exercise as long

as St > c for a certain constant c < K, and exercise as soon as the stock price St

reaches the level c. The value of the American option then becomes equal to the

value of the perpetual European option which pays K− c as soon as the stock price

St takes the value c. The constant c can be chosen by the holder and is therefore

determined implicitly by the requirement that it should maximize the option’s value.

To find the exercise boundary given by the constant c, we evaluate the value of

the corresponding European option. This problem is similar to the one that was

discussed in Example 4.1.1. The general solution to the time-homogeneous Black-

Scholes equation is

π(S) = aS + bS−γ , γ = 2r/σ2, c ≤ S <∞

where this time a and b have to be chosen to meet the boundary conditions

π(c) = K − c, π(S) bounded as S →∞.

The second condition implies that a = 0. Therefore, the value of the European

option as a function of S is always of the form bS−γ , where the constant b depends

on the unknown c.

If we consider the collection of curves of the form bS−γ for values of b that

increase from 0, then we see that for low values of b the curve crosses the line K−S
twice until for some critical value of b it just touches this line; for higher values of

b the two curves do not cross. Since there must be at least one value of S (namely

S = c) such that K − S = bS−γ , the high values of b do not qualify. Among all

the curves that remain, the one that just touches the line K − S is the one that

produces the highest option values (for all values of S). Therefore, the values of b

and c are determined by the two conditions

K − c = bc−γ (4.52a)
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Figure 4.2: The drawn curve represents the value of a perpetual American put option,
as a function of the value of the underlying. The parameter values are: strike K = 100;
interest rate r = 2%; volatility σ = 0.2. The dashed curve (partly covered by the drawn
curve) indicates the value of immediate exercise. The dotted curve (also partly covered)
represents a function of the form bS−γ , with γ = 2r/σ2.

−1 = −bγc−γ−1. (4.52b)

This produces the following result:

c =
r

r + 1
2σ

2
K. (4.53)

So for S ≥ c, the value of the American put option is given by

π(S) =
1
2σ

2K

r + 1
2σ

2

[(
1 +

σ2

2r

) S
K

]−2r/σ2

for S ≥ r

r + 1
2σ

2
K (4.54a)

whereas for S ≤ c the option is exercised immediately and so its value is

π(S) = K − S for S ≤ r

r + 1
2σ

2
K. (4.54b)

Figure 4.2 shows a graph of the value of a perpetual American put option, together

with a graph of the value of immediate exercise. The exercise region is determined

in such a way that the payoff function, as a function of the state variable, is not only

continuous but also continuously differentiable; there is no “kink” at the exercise

boundary. This is called the smooth pasting condition. This condition can be shown

to hold also in case of non-perpetual contracts. The smooth pasting condition serves

as an extra boundary condition that may be used to determine the solution in cases

where other boundary conditions do not suffice to define the solution uniquely.
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4.4.2 A defaultable perpetuity

A perpetuity is a contract that entitles the holder to a series of fixed annual payments

that will go on forever.4 Such a contract can only be credibly sold by an institution

that is expected to exist eternally.5 Perhaps more realistically, one can imagine

a trust fund which is, at some point in time, equipped with a certain amount of

capital, and which then pays a fixed amount each year to eligible beneficiaries, until

the fund runs out of money.6 The product that is defined in this way could be

called a defaultable perpetuity. Suppose that the fund holds a fixed-mix portfolio,

and assume that the Black-Scholes model applies with r > 0. For simplicity, consider

a continuous payment stream of c units of currency per year, instead of payments

at discrete times. The evolution of the fund’s capital is then given by the SDE

dSt = (rSt − c) dt+ σSt dWt (4.55)

where Wt is a Brownian motion under the risk-neutral measure Q. Let us determine

the value of this contract to the holder. As in the case of the barrier option dis-

cussed above, the value should be determined completely by St (which in this case

is the current size of the capital in the trust fund) and should not depend on time.

Therefore, we again arrive at an ODE, which now is given by (taking into account

that the contract generates a dividend of size c∆t in an interval of length ∆t)

c+ (rS − c) dπC
dS

(S) + 1
2σ

2S2 d
2πC
dS2

(S) = rπC(S). (4.56)

Since this is a second-order ODE, two boundary conditions should be provided to

determine a unique solution. One boundary condition is fairly obvious:

πC(0) = 0.

To arrive at a second boundary condition, note that, when the fund’s capital is large

relative to the annual payment, the fund will not easily run out of money, so that

the value of the stream of payments should be close to the value of a guaranteed

annuity, which is ∫ ∞
0

e−rtc dt =
c

r
.

4Clearly, the holder may not be able to enjoy all of those payments herself. However, she might
view the bond as an investment and at some point sell it, or she might bequest it.

5For instance, the government of the United Kingdom has issued such instruments (in 1751, and
again in 1927) under the name of “consol bonds”. These bonds carried a redemption provision,
however. The last of the outstanding consol bonds were redeemed in 2015.

6The term endowment fund is also often used for funds that generate an ongoing income stream
on the basis of an initially given capital.
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Therefore, as a second boundary condition it is reasonable to impose

lim
S→∞

πC(S) =
c

r
. (4.57)

To solve the equation (4.56), it is useful to differentiate both sides with respect to

S. To shorten the notation, write π′C(S) instead of dπC(s)/dS, and likewise for the

second derivative. Applying differentiation to (4.56) leads to

(
(r + σ2)S − c)π′′C(S) + 1

2σ
2S2π′′′C (S) = 0 (4.58)

(note that differentiation generates a term rπ′C(S) both on the left and on the right,

so that a cancellation occurs). If we can find functions g(S) and h(S) such that

h(S)g(S) = 1
2σ

2S2, h(s)g′(S) = (r + σ2)S − c (4.59)

then solutions of (4.58) can be found by solving π′′C(S) = a1/g(S) where a1 is

an arbitrary constant; indeed, we then have g′(S)π′′C(S) + g(S)π′′′C (S) = 0, and

multiplication by h(S) shows that (4.58)is satisfied. To find a solution to (4.59),

write
d

dS
log g(S) =

g′(S)

g(S)
=

(r + σ2)S − c
1
2σ

2S2
= 2

(
r

σ2
+ 1

)
1

S
− 2c

σ2S2

A solution of this is given by

log g(S) = 2
( r
σ2

+ 1
)

logS +
2c

σ2S
⇒ g(S) = S2r/σ2+2e2c/(σ2S).

Consequently, (4.58) is solved by

πC(S) = a1f(S) + a2S + a3 (4.60)

where a1, a2, and a3 are constants and the function f(x) is a second integral of

1/g(x); specifically, we can take

f(x) =

∫ x

0

∫ u

0
z−2r/σ2−2 e−2c/(σ2z) dz du. (4.61)

The three constants are to be determined by the two boundary conditions and by the

requirement that the solution should satisfy (4.56) rather than just the differentiated

form (4.58). The boundary condition πC(0) = 0 leads to the condition a3 = 0.

Because (4.58) is obtained from (4.56) by differentiation, any solution of (4.58) is

such that

c+ (rS − c)π′C(S) + 1
2σ

2S2π′′C(S)− rπC(S) = κ (4.62)
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where κ is a constant. A given solution of (4.58) is also a solution of (4.56) if and

only if this constant is 0. To verify this, it is sufficient to evaluate the left hand side

of (4.62) at any point, for instance S = 0; the condition to be fulfilled is therefore

c− cπ′C(0)− rπC(0) = 0.

Since πC(0) = 0 and π′C(0) = a2, the condition that we find is a2 = 1. It remains

to determine the constant a1 on the basis of the second boundary condition. This

takes a bit more work.

The double integral that appears in the function f(x) can be simplified by means

of integration by parts. If we define (writing a = 2r/σ2, b = 2c/σ2)

g(u) =

∫ u

0
z−a−2e−b/z dz

then

f(x) =

∫ x

0
g(u) du = ug(u)

∣∣∣x
0
−
∫ x

0
ug′(u) du = xg(x)−

∫ x

0
u · u−a−2e−b/u du

= x

∫ x

0
z−a−2e−b/z dz −

∫ x

0
z−a−1e−b/z dz.

This is a representation in terms of single integrals. The integrals can be rewritten

in terms of a standard special function by the substitution y = b/z, as follows:∫ x

0
z−a−2e−b/z dz =

∫ ∞
b/x

b−a−2ya+2e−yby−2 dy = b−a−1

∫ ∞
b/x

yae−y dy

= b−a−1Γ(a+ 1, b/x)

where Γ denotes the upper incomplete gamma function7

Γ(a,w) =

∫ ∞
w

ta−1e−t dt.

Likewise, ∫ x

0
z−a−1e−b/z dz = b−aΓ(a, b/x)

The expression (4.60) can therefore be rewritten, using a2 = 1 and a3 = 0, as

πC(S) = a4

(
SΓ(a+ 1, b/S)− bΓ(a, b/S)

)
+ S

7When the upper incomplete gamma function is divided by the value Γ(a) = Γ(a, 0) of the
complete gamma function at a (a normalization which is in some sources, but not here, included in
the definition), then the result is the decumulative distribution function of the Gamma distribution.
In other words, when X is a variable that follows a Gamma distribution with shape parameter a and
rate parameter 1, then the probability that X exceeds a given value w ≥ 0 is equal to Γ(a,w)/Γ(a).
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= S
(
1 + a4Γ(a+ 1, b/S)

)
− a4bΓ(a, b/S)

where the constant a4 is still to be determined. It is seen from the expression above

that the only choice for a4 that has a chance of satisfying the boundary condition at

infinity is a4 = −1/Γ(a+1); any other choice will lead to a limit value of πC(S) that

is either ∞ or −∞. To see that setting a4 = −1/Γ(a + 1) indeed satisfies (4.57),

note that

lim
S→∞

S

(
1− Γ(a+ 1, b/S)

Γ(a+ 1)

)
= lim

x↓0
b

1− Γ(a+ 1, x)/Γ(a+ 1)

x
= − lim

x↓0

bxae−x

Γ(a+ 1)
= 0

by L’Hôpital’s rule,8 and

lim
S→∞

b
Γ(a, b/S)

Γ(a+ 1)
= b

Γ(a)

Γ(a+ 1)
=
b

a
=
c

r

by the standard fact (proved by integration by parts) that Γ(a + 1) = aΓ(a). In

summary, the solution is as follows:

πC(S) = S

(
1−

Γ
(
a+ 1, b/S)

)
Γ(a+ 1)

)
+
c

r

Γ(a, b/S))

Γ(a)
(4.63)

where a = 2r/σ2, b = 2c/σ2.

A plot of πC(S) as a function of S is shown in Fig. 4.3. Also shown are the two

upper bounds that must hold for the value of the defaultable perpetuity: the value

cannot be higher than the value of the available capital, nor can it be higher than the

value of a guaranteed perpetuity. For low values of capital (relative to the annual

payout), the value of the perpetuity is approximately equal to the value of available

capital. In this situation, it is likely (under the real-world measure, and even more

so under the risk-neutral measure) that capital will run out at some point, i.e., in the

language of actuarial science, ruin occurs. Therefore there is a high probability that

all capital will be spent. On the other hand, if the initial capital is high, there are

many scenarios in which ruin never occurs. This means that there is a substantial

probability that not all capital will be spent, so that the value of the perpetuity is

less than the value of available capital. The “law of conservation of value” does not

apply in this case, because part of the initial capital is pushed towards infinity.

As is seen from the graph, the waste of capital is not negligible even in cases

where the initial capital is in the range of 50 to 90 percent of what would be needed

for a guaranteed perpetuity (as probably often happens in practice), especially when

a high volatility is chosen. In a Black-Scholes world with fixed interest rates, trustees

of a fund that aims to pay a fixed income stream will probably not maintain the fixed-

8Guillaume François Antoine, marquis de L’Hôpital (1661–1704), French mathematician.

144

OPEN PRESS TiU



Analytical option pricing Further worked examples

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

available capital

v
a

lu
e

 

 

sigma = 0.05

sigma = 0.20

Figure 4.3: Value of a defaultable perpetuity, as a function of available capital. The
annual payment rate is taken to be 1. A Black-Scholes model is assumed for the evolution
of capital. Outcomes are shown for two values of the volatility, namely σ = 0.05 (drawn
line) and σ = 0.2 (dashed line). Also shown are the two upper bounds that are given by the
available capital and by the value of a guaranteed perpetuity (dash-dotted lines).

mix policy when the value of capital grows above the amount that is needed to pay a

guaranteed perpetuity; in such a case, the downward risk cannot be compensated by

the upward potential, because further capital gains, if they occur, will never be used.

A fully efficient9 policy could be designed as the replication policy that corresponds

to the value function πC(S). This policy would gradually reduce the volatility of the

investment portfolio when capital approaches the value of a guaranteed perpetuity.

4.4.3 The Vasicek model

Contracts that pay a fixed amount at a given time T are known as default-free zero-

coupon bonds. The price at time t of a zero-coupon bond that matures at time T

(written as Pt(T )) determines the discount factor that must be applied at time t to

a payment that will be received at time T . This discount factor is usually expressed

in terms of an interest rate (discretely compounded rd
T or continuously compounded

rc
T ) through

P0(T ) = dT =
1

(1 + rd
T )T

, P0(T ) = dT = exp(−rc
TT ).

In this way the prices of zero-coupon bonds for different maturities determine what

is called the term structure of interest rates. The term structure reflects the “time

9“Efficient” is meant here in the sense that the initial capital is fully used, i.e. no funds are
shifted towards infinity.
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value of money”; it will be discussed more extensively in Chapter 5.

The Vasicek model is a model for the short rate process rt. It was already used

to illustrate the pricing kernel method in Example 4.1.3. The Vasicek bond pricing

formula will be re-derived here in somewhat more detail and using the numéraire-

dependent pricing formula rather than the pricing kernel. As a numéraire, we take

the money market account, and we specify the model under the corresponding equiv-

alent martingale measure QM in the form

drt = a(b− rt) dt+ σ dWt (4.64)

where Wt is a Brownian motion under Q. Let the price at time t ≤ T of the contract

that pays 1 at time T be denoted by Pt(T ). Apply the NDPF:

P0(T )

M0
= EQM PT (T )

MT
= EQM 1

MT
.

We can set M0 = 1.

For convenience of notation, drop the superscript QM now. The problem comes

down to: determine E[1/MT ] when MT is given by

dMt = rtMt dt

drt = a(b− rt) dt+ σ dWt.

with M0 = 1. Write mt := log Mt and note that dmt = rt dt. The problem therefore

is: determine E[exp(−mT )] when mT is given by

dmt = rt dt

drt = a(b− rt) dt+ σ dWt

with m0 = 0. The equations can be written in vector form as

d

[
rt

mt

]
=

[
−a 0

1 0

][
rt

mt

]
dt+

[
ab

0

]
dt+

[
σ

0

]
dWt. (4.65)

These are linear equations. Therefore the distribution of mT is normal, and the

distribution of exp(−mT ) is lognormal. We have

E[exp(−mT )] = exp
(
−E[mT ] + 1

2 var(mT )
)
.

So we must determine E[mT ] and var(mT ). To solve the vector differential equation
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(4.65), one can for instance use the “left eigenvector method”. Note that

[
1 0

] [−a 0

1 0

]
= −a ·

[
1 0

]
,

[
1 a

] [−a 0

1 0

]
= 0 ·

[
1 a

]
.

Therefore we can write scalar SDEs for rt (as already known) and for rt + amt.

drt = −art dt+ ab dt+ σ dWt

⇒ rT = e−aT r0 +
∫ T

0 e
−a(T−t)ab dt+

∫ T
0 e
−a(T−t)σ dWt

d(rt + amt) = ab dt+ σ dWt

⇒ rT + amT = r0 + am0 + abT +
∫ T

0 σ dWt.

We find (note m0 = 0)

mT =
1− e−aT

a
(r0 − b) + bT +

σ

a

∫ T

0

(
1− ea(T−t)

)
dWt.

Using the property “you can’t beat the system” (Thm. 2.2.2) and the rule (2.49) for

the variance of a stochastic integral with deterministic integrand, one finds

E[mT ] =

[
b +

1− e−aT

aT
(r0 − b)

]
T

var(mT ) =
σ2

a2

∫ T

0

(
1− ea(T−t)

)2
dt

=
σ2

a2

[
1− 2

1− e−aT

aT
+

1− e−2aT

2aT

]
T.

Consequently, the price at time 0 of the zero-coupon bond that pays 1 at time T is

given in the Vasicek model by

P0(T ) = exp

(
−

[
b +

1− e−aT

aT
(r0 − b)−

σ2

2a2

(
1− 2

1− e−aT

aT
+

1− e−2aT

2aT

)]
T

)
(4.66)

where it should be recalled that the parameter b is the one that appears in the

model under Q; consequently, this parameter must be interpreted as a risk-adjusted

mean reversion level of the short rate. As a soundness check, one can verify that

the formula above reduces to P0(T ) = exp(−r0T ) if σ = 0 and r0 = b. Since T

represents time to maturity in the derivation above, the discount factor Pt(T ) from

a general time t ≤ T to T under the Vasicek model is given by the same formula,

with r0 replaced by rt and T by T − t.
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Figure 4.4: Yield curves according to the Vasicek model with parameter values a = 0.4,
b = 0.02, σ = 0.01. The yield curves are shown for several values of the current short rate.

The term structure of interest rates is usually not expressed directly in terms of

bond prices, but rather in terms of the corresponding interest rates. From (4.66), it

is seen that the continuously compounded interest rate for maturity T according to

the Vasicek model is given by

R0(T ) = b +
1− e−aT

aT
(r0 − b)−

σ2

2a2

(
1− 2

1− e−aT

aT
+

1− e−2aT

2aT

)
. (4.67)

A plot of the function of T that is defined in this way (the “yield curve”) is shown

in Fig. 4.4. In fact, several curves are shown, corresponding to different values of

the short rate r0.

4.4.4 Put option in Black-Scholes-Vasicek model

The next example concerns a situation with two sources of risk. The solution method

that is shown here (as usual, it is not the only possible method) uses a technique

similar to that of Section 4.2.5: split the payoff into two parts that are handled by

different numéraires. In this way, the example also serves to illustrate the change-

of-numéraire technique in a situation with multiple driving Brownian motions.

The Black-Scholes-Vasicek model, written under the risk-neutral measure QM ,

takes the following form:

dSt = rtSt dt+ σSSt dWS,t

dMt = rtMt dt

drt = a(b− rt) dt+ σr dWr,t.
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The Brownian motions WS,t and Wr,t are assumed to be independent (for simplicity).

Our purpose in this section will be to derive a pricing formula for a put option with

St as the underlying. The put pricing problem is relevant for an institution that

seeks nominal downward protection for its investments in the face of variable interest

rates. The institution might buy put options, but it could also choose to create a

put option synthetically by following a replication strategy.

We can use the splitting method:

max(K − ST , 0) = 1{ST≤K}K − 1{ST≤K}ST .

When the money market account is used as a numéraire for the first part and the

stock as a numéraire for the second part, then the put value C0 at time 0 is written

as

C0 = M0E
QM

[
1{ST≤K}K

MT

]
− S0E

QS
[
1{ST≤K}

]
.

Unfortunately, calculation of the expectation on the left requires the joint distri-

bution of ST and MT . This complication can be avoided by using, instead of the

money market account, another numéraire: the zero-coupon bond that matures at

time T . The corresponding EMM is called the forward measure. It is denoted by

QT .

The numéraire-dependent pricing formula for a general contract C under the

forward measure is as follows:

Ct
Pt(T )

= EQT
t

[ CT
PT (T )

]
= EQT

t [CT ]

because PT (T ) = 1. This leads to the pricing formula

Ct = Pt(T )EQT
t [CT ].

This expression is of the form ”first take expectation, then apply the discount factor

that corresponds to the time of payment”. It should be noted that expectation is

taken here under QT .

Returning now to the put valuation problem, the expression for the put value

that is obtained from the splitting method with the T -bond and the stock as

numéraires is

C0 = P0(T )KQT (ST ≤ K)− S0QS(ST ≤ K). (4.68)

To calculate the probability of the event ST ≤ K under QT , we rewrite the model

under this measure. For that purpose we need σT , the volatility of the bond with

maturity T . We already computed the price of the T -bond in the Vasicek model.
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The pricing function is of the form

πT (t, rt) = exp
(
−1− e−a(T−t)

a
rt + fT (t)

)
where fT (t) depends on t only. Let σT denote the corresponding volatility. Note

that σT is a 1 × 2 vector, since there are two Brownian motions in the model. We

have

σT =
[∂πT
∂S

∂πT
∂r

]σSS 0

0 σr

 =:
[
σT,S σT,r

]
.

The quantities that we need can be readily computed:

∂πT
∂S

= 0,
1

πT

∂πT
∂r

=
∂(log πT )

∂r
= −1− e−a(T−t)

a
.

Therefore

σ>T
πT

=
1

πT

σT,S
σT,r

 =

 0

−σr
a

(
1− e−a(T−t)

)
 .

With this, we can rewrite the model under the forward measure QT ; use the formula

µTX = µX + σXσ
>
T /πT . In the case of the BSV model:

µTS = rtSt + [σSt 0]

 0

−σr
a

(
1− e−a(T−t)

)
 = rtSt

µTr = a(b− rt) + [0 σr]

 0

−σr
a

(
1− e−a(T−t))

 = a(b− rt)−
σ2
r

a

(
1− e−a(T−t)

)
.

The BSV model under QT is:

dSt = rtSt dt+ σSSt dW
T
S,t

dMt = rtMt dt

drt = a
(
b(t)− rt

)
dt+ σr dW

T
r,t

where

b(t) = b− σ2
r

a2

(
1− e−a(T−t)

)
.

We can write

d

[
log St

rt

]
=

([
0 1

0 −a

][
log St

rt

]
+

[
1
2σ

2
S

ab(t)

])
dt +

[
σS 0

0 σr

]
d

[
W T
S,t

W T
r,t

]
.

This shows that the vector consisting of logSt and rt satisfies a linear SDE, as
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discussed in Section 2.6.3. It follows that logSt and rt are, at any time t, jointly

normally distributed. Expectations and variances can be computed as indicated in

Section 2.6.3, and subsequently the quantity QT (ST ≤ K), which will be needed in

the expression (4.68) for the put value, can be obtained.

Before entering into the computation of the expectation and variance of logST ,

let us determine the form of the BSV model under QS , which will be needed as well.

Using the standard formulas for change of numéraire, we find

µSS = µMS + [σS 0]
σ>S
πS

= (rt + σ2
S)St

µSr = µMr + [0 σr]
σ>S
πS

= a(b− rt).

The BSV model under QS is

dSt = (rt + σ2
S)St dt+ σSSt dW

S
S,t

dMt = rtMt dt

drt = a(b− rt) dt+ σr dW
S
r,t.

The joint SDE for logSt and rt is

d

[
log St

rt

]
=

([
0 1

0 −a

][
log St

rt

]
+

[
1
2σ

2
S

ab

])
dt +

[
σS 0

0 σr

]
d

[
W T
S,t

W T
r,t

]

so that, also in this case, we find a linear vector SDE. Therefore, expectation and

variance of logST can again be computed from the formulas of Section (2.6.3).

Now, we proceed to the calculation of expectation and variance of logST both

under QS and under QT . Consider first QS . The differential equation for the

expectations of logST and rt is given by (2.81), and the joint variance-covariance

matrix of logSt and rt is described by the differential equation (2.84). Write m1(t) =

EQS [logSt], m2(t) = EQSrt. These quantities are subject to the following differential

equations:

dm1

dt
(t) = m2(t) + 1

2σ
2
S ,

dm2

dt
(t) = −am2(t) + ab.

These equations can be solved successively, starting with m2:

m2(t) = e−atm2(0) + (1− e−at)b = e−at(m2(0)− b) + b

m1(t) = m1(0) +
1− e−at

a
(m2(0)− b) + (b+ 1

2σ
2
S)t. (4.69)

As a variation of the method used in Section 4.4.3 to determine variances, we can
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use the matrix differential equation (2.84). The equation becomes in the present

case (time arguments are suppressed to alleviate the notation)

d

dt

[
h11 h12

h21 h22

]
=

[
0 1

0 −a

][
h11 h12

h21 h22

]
+

[
h11 h12

h21 h22

][
0 0

1 −a

]
+

[
σ2
S 0

0 σ2
r

]

where it should be noted that h12(t) = h21(t) because of the symmetry of the

variance-covariance matrix. Writing this in coordinates, one obtains:

dh11

dt
(t) = h21(t) + h12(t) + σ2

S = 2h12(t) + σ2
S

dh12

dt
(t) = h22(t)− ah12(t)

dh22

dt
(t) = −2ah22(t) + σ2

r .

Since logS0 and r0 are given, we have H(0) = 0, so that the initial conditions for

all variables are 0. Again the equations can be solved consecutively.

h22(t) =
1− e−2at

2a
σ2
r =

σ2
r

2a
− σ2

r

2a
e−2at

h12(t) =
σ2
r

2a

1− e−at

a
− σ2

r

2a

∫ t

0
e−a(t−s)e−2as ds

=
σ2
r

2a2
(1− e−at)− σ2

r

2a
e−at

∫ t

0
e−as ds

=
σ2
r

2a2
(1− e−at)− σ2

r

2a
e−at

1− e−at

a
ds

=
σ2
r

2a2

(
1− 2e−at + e−2at

)
h11(t) =

σ2
r

a2

(
t− 2

1− e−at

a
+

1− e−2at

2a

)
+ σ2

St

=
(σ2

r

a2
+ σ2

S

)
t− σ2

r

a3

(
3
2 − 2e−at + 1

2e
−2at

)
. (4.70)

The differential equations for the expectations of logSt and rt under QT are slightly

more involved, due to the presence of a more complicated forcing term:

dm1

dt
(t) = m2(t)− 1

2σ
2
S

dm2

dt
(t) = −am2(t) + a

(
b− σ2

r

a2

(
1− e−a(T−t)

))
where m1(t) and m2(t) now refer to expectations under QT . The equations can still
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be solved consecutively:

m2(t) = e−atm2(0) + a
(
b− σ2

r

a2

)1− e−at

a
+
σ2
r

a

∫ t

0
e−a(t−s)e−a(T−s) ds

= e−atm2(0) +
(
b− σ2

r

a2

)
(1− e−at) +

σ2
r

a
e−a(T+t) e

2at − 1

2a

= b− σ2
r

a2
+
(
m2(0)− b+

σ2
r

a2

)
e−at +

σ2
r

2a2
e−aT (eat − e−at)

m1(t) = m1(0) +
(
b− 1

2σ
2
S −

σ2
r

a2

)
t+

(
m2(0)− b+

σ2
r

a2

)1− e−at

a

+
σ2
r

2a2
e−aT

(
eat − 1

a
− 1− e−at

a

)
. (4.71)

The variance of logSt under QT is the same as under QS . We therefore find from

(4.70)

varQS (ST ) = varQT (ST ) = σ2T

where σ2 is defined by

σ2 = σ2
S +

σ2
r

a2

(
1−

3
2 − 2e−aT + 1

2e
−2aT

aT

)

= σ2
S +

σ2
r

a2

(
1− 2

1− e−aT

aT
+

1− e−2aT

2aT

)
. (4.72)

Recall the expression in (4.67) for the interest rate R0(T ) that corresponds to ma-

turity T according to the Vasicek model. From (4.69) and (4.71), the following

expressions are obtained:

EQS [logST ] = logS0 + (b+ 1
2σ

2
S)T + (r0 − b)

1− e−aT

a

= logS0 +
(
R0(T ) + 1

2σ
2
1

)
T (4.73)

EQT [logST ] = logS0 +
(
b− 1

2σ
2
S −

σ2
r

a2

)
T +

(
m2(0)− b+

σ2
r

a2

) 1− e−aT

a

+
σ2
r

2a3
(1− 2e−aT + e−2aT )

= logS0 +
(
R0(T )− 1

2σ
2
)
T (4.74)

Consequently, if the parameter r is set equal R0(T ), and σ is defined by (4.72),

then the time-0 value of the put option in the Black-Scholes-Vasicek model can be

written in the same way as the put option value in the BS model, namely

C0 = −S0Φ(−d1) + e−rTKΦ(−d2) (4.75a)
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where the parameters d1 and d2 are defined by the familiar formulas

d1 =
log(S0/K) + (r + 1

2σ
2)T

σ
√
T

, d2 =
log(S0/K) + (r − 1

2σ
2)T

σ
√
T

. (4.75b)

In the BSV model, we find in this way that the interest rate with respect to the time

of maturity T of the put option should be taken, whereas there is no such indication

in the BS model since that model assumes that the interest rate is the same for all

maturities. Moreover, the formula uses a volatility that is higher than the volatility

of the underlying asset. This is natural, since the variability of the interest rate

introduces an additional uncertainty into the model. The BSV put pricing formula

therefore provides a partial explanation for the fact that the implied volatility (i.e.

the volatility that is backed out from observed option prices) is often higher than

the historical volatility that is obtained from time series analysis of the price of the

underlying asset. The correction term in (4.72) is horizon-dependent and becomes

more important for longer maturities, but for typical parameter values it is small

relative to the Black-Scholes volatility σ2
S . The numerical impact of the volatility

correction relating to interest rate variability is therefore usually small; it is much

more important to use the correct value of the interest rate.

4.5 Exercises

1. Re-derive the price of a digital option in the Black-Scholes model (see (4.10)

using the numéraire-dependent pricing formula with S as the numéraire, rather than

B.

2. Obtain the price of a digital option in the Black-Scholes model by means of

the pricing kernel method. The computations may be simplified by noting that the

solution should not depend on the parameter µ in the Black-Scholes model (since

this parameter doesn’t appear in the corresponding Black-Scholes equation), so that

µ can be assigned any convenient value.

3. The following market was considered in Exc. 3.8:

dSt = µSt dt+ σSt dW1,t

dFt = µ1Ft dt+ σ1Ft dW1,t + σ2Ft dW2,t

dBt = rBt dt.

All three variables represent prices of traded assets; St is a stock index, Ft is the share

price of an exchange-traded investment fund, and Bt is a bond. The parameters µ,

σ, µ1, σ1, σ2, and r are positive constants. The Brownian motions W1,t and W2,t are

independent. It has been shown in Exc. 3.8 that the above market is arbitrage-free
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and complete. Investors who buy shares in the fund may be concerned that the

return of the fund may lag behind the stock market index. Therefore they may be

interested in a contract that will pay to the holder at time T the difference between

the stock index value and the fund share value, if that difference is positive. In other

words, the payoff of the contract is max(ST , FT ). In order to determine the value

of this contract, it is convenient to work with St as a numéraire. The associated

equivalent martingale measure is denoted by QS .

a. Rewrite the model in a form in which the driving processes are Brownian motions

under QS .

b. Determine the value at time 0 of the contract with payoff max(ST , FT ). As a

special case, determine the value of the contract when the fund share value and the

index value are initially equal, i.e. F0 = S0.

4. Re-derive formula (4.66) for the price of a bond in the Vasicek model by solving

the partial differential equation (4.15) with the boundary condition πT (T, x) = 1, as

follows. Try a solution of the form πT (t, x) = exp(f(t)+g(t)x) for suitable functions

f and g. Use the fact that the resulting equation must hold for all x, and solve the

resulting ordinary differential equations for f and g with the appropriate boundary

conditions.

5. Prove that the Black-Scholes model extended with (4.51) is complete and free of

arbitrage. Write down the pricing equation for options whose payoff is determined

by AT .

6. A continuously sampled geometric Asian option is a contract whose payoff

depends on the geometric average of the underlying asset during a certain period.

The continuous geometric average is defined by

AT = S0 exp

(
1

T

∫ T

0
log

St
S0

dt

)
. (4.76)

a. Show that the valuation of geometric Asian options becomes possible in the Black-

Scholes model after addition of one extra state variable with suitable dynamics.

Prove that the resulting model is complete and free of arbitrage.

b. Write down the pricing equation for geometric Asian options that follows from

the model constructed in part a.

c. Give a formula for the value of a digital geometric Asian option.

d. Give a formula for the value of a geometric Asian call option, and compare the

result to the Black-Scholes formula for the value of a European call option.

7. In the Black-Scholes model, a general formula for the price at time 0 of a contract
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that pays f(ST ) at time T , where f is a given payoff function, is given by (4.47):

C0 =
e−rT√

2π

∫ ∞
−∞

exp(−1
2z

2)f
(
S0 exp((r − 1

2σ
2)T + σ

√
Tz)

)
dz. (4.77)

In cases where the integral cannot be evaluated analytically, we may still evaluate

it numerically by making use of the approximation formula10

C0 ≈
e−rT√

2π

N∑
k=1

exp(−1
2z

2
k)f
(
S0 exp((r − 1

2σ
2)T + σ

√
Tzk)

)
∆z (4.78)

where the zk’s form a uniform grid with step size ∆z. To make the approximation

accurate, the grid should be sufficiently wide and the step size should be sufficiently

small.

In the calculations below, assume the following parameter values: r = 0.04,

σ = 0.2, S0 = 100.

a. Consider first a standard call option with time of maturity T = 1 and strike

K = 100. Plot the integrand (i.e. the function that appears under the integral sign)

in (4.77) as a function of z. Determine a suitable grid width and a suitable step

size, and compute the integral by the approximation (4.78). Compare to the exact

value as obtained from the Black-Scholes formula. Which grid width and step size

do you need to get an approximation error of less than one cent?

Now consider the pricing of a compound option. Specifically, consider a contract

that gives the holder the right, but not the obligation, to buy at time T1 at the price

K1 a put option on the underlying asset S which expires at time T2 > T1 and which

has strike K2 (a “call on a put”). Note that the value of the contract at time T1 is

max(P −K1, 0) where P is the value of a put with strike K2 whose underlying asset

value is ST1 and which has T2 − T1 units of time to maturity. Take T1 = 1, T2 = 2,

K1 = 5, K2 = 100.

b. Write down the value of the compound option in the form (4.77). Plot the inte-

grand to determine a suitable grid width. Compute approximations of the value of

the option by the formula (4.78) using several different step sizes, and determine the

value of the option up to an accuracy of one cent. (You may judge the convergence

“by eye”.)

8. Consider the pricing of an option with payoff f(ST ) within the Black-Scholes

model. Instead of using a numerical integration method based on discretization, as

10The formula (4.78) is a simple example of a numerical integration scheme. The numerical
evaluation of single integrals is also known as quadrature, because it comes down to computing the
area of a certain region in a plane. Numerical techniques for multiple integrals go by the name of
cubature methods.
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in (4.78), one might also use a method based on function approximation. Introduce

a function F (z) by

F (z) = f(S0 exp
(
(r − 1

2σ
2)T + σ

√
T z). (4.79)

The option price is then given by C0 = e−rTE[F (Z)] with Z ∼ N(0, 1). If one has

an approximation of the form

F (z) ≈
n∑
i=1

ciφi(z) (4.80)

where the functions φi are such that E[φi(Z)] is known analytically, then an ap-

proximate value of the option price is given by

C0 ≈ e−rT
n∑
i=1

ciE[φi(Z)]. (4.81)

a. Consider the same situation as in Exc. 7.a. Use the following basis functions:

φ1(z) = 1, φ2(z) = sin(az), φ3(z) = cos(az), φ4(z) = sin(2az), φ5(z) = cos(2az),

where a is a constant that is still to be selected. Find an approximation to the func-

tion F defined in (4.79) in terms of these basis functions by taking a grid {z1, . . . , zm}
and regressing the vector of function values [F (z1) · · ·F (zm)] on the corresponding

vectors [φi(z1) · · ·φi(zm)] (i = 1, . . . , 5) formed from the basis functions. A fine grid

is not needed for this purpose; take for instance a grid from −4 to 4 with steps of

size 1. Plot the function F as well as its approximation on a wider grid than you

used in the regression, to see the quality of the approximation. Experiment to find a

value of a that generates a good approximation. Then compute an approximate op-

tion value from the formula (4.81), using the known values of E[φi(Z)] (see (2.99)).

Compare to the exact value as found from the Black-Scholes formula.

b. Rewrite the function F (z) in (4.79) as F (z;S0) to indicate the parameter S0

explicitly. Verify that, for η > 0, we have

F (z; ηS0) = F
(
z + (log η)/

(
σ
√
T
)
, S0

)
.

Consequently, (4.80) implies

F (z; ηS0) ≈
n∑
i=1

ciφi
(
z + (log η)/

(
σ
√
T
))
.

Use the standard formulas

sin(x+ y) = sinx cos y + cosx sin y, cos(x+ y) = cosx cos y − sinx sin y
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to show that the approximation coefficients found in part a. can be used to find

approximate option values not only for S0 as given, but in fact for all possible initial

values of the underlying asset. Plot a graph of the approximate option values as a

function of the initial value of the underlying, and compare to the exact solution.11

9. Write down the concrete form of the variational inequality (3.68) for the case of

the perpetual American put in the standard Black-Scholes model, and verify that

the function (4.54) is the unique continuously differentiable solution. Provide an

interpretation of the result that you get by applying the Black-Scholes differential

operator to function (4.54) in the exercise region. [Hint : consider the delta hedging

position taken by the writer of the option when the price of the underlying is in the

exercise region.]

10. Is the second derivative of the function (4.54) a continuous function? Explain

the answer on the basis of what you found in the previous exercise.

11. Assume the standard Black-Scholes model, and consider the perpetual Ameri-

can option with payoff given by

F (S) =

 1 if S ≥ U or S ≤ L

0 if L < S < U

where L and U are given constants with L < U . Determine the value of the contract

by direct reasoning (cf. Example 4.1.1). Does the smooth pasting principle hold?

Is this option a “true American”?

12. A straddle is a contract with payoff function F (S) = |S −K|. Determine the

value of a perpetual American straddle under the standard Black-Scholes assump-

tions.

13. The payoff function of a straddle, F (S) = |S −K|, is the sum of the payoffs of

a put and a call, both with strike K. Does it follow that the value of an American

straddle is the sum of the value of the American call and the American put with

the same strike price?

11A similar extension from a single value of the underlying to all values of the underlying is
possible when exponentials are used as basis functions, or all polynomials up to a certain degree.
The key property is that the space of basis functions should be closed under the shift operators
defined by (Thφ)(x) = φ(x + h), or equivalently, that the space of linear combinations of basis
functions should be closed under differentiation.
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Chapter 5

The term structure of interest

rates

5.1 Term structure products

One of the principal roles of financial markets is that they allow cashflows to be

shifted over time. Lending agreements are presumably the oldest financial contracts,

and today the markets related to interest rates are still the largest among all financial

markets. Economic activity is greatly facilitated by the ability to borrow.

Interest rates depend on time in two different ways. First of all, there is a

dependence on the time to maturity. Short-term interest rates are typically different

from (usually lower than) long-term interest rates. This fact is expressed by saying

that interest rates have a term structure. The dependence of interest rates on the

time to maturity can be expressed in several ways, as discussed in the following

section. In addition to the dependence on the time to maturity, there is also a

dependence on calendar time. This is analogous to the dependence of, for instance,

stock prices on calendar time. While in the case of a stock price we have just a single

quantity that depends on time, in the case of interest rates there are many quantities

involved which do not move completely in step but which are also not completely

independent. If today the three-month rate is higher than it was yesterday, then

presumably the six-month rate is also up, but perhaps not to the same extent, and

it may well happen that the twenty-year rate has actually gone down. Modeling the

evolution of the term structure of interest rates is therefore more complicated than

modeling the evolution of, say, a stock price.

The simplest term structure product is the zero-coupon bond. This is just an

agreement in which party A pays a given amount V1 to party B at time 0 (now),

and party B pays to party A a given amount V2 at time T (the time of maturity).

When party A is an individual consumer and party B is a bank, the zero-coupon

bond is also known as a deposit. The unit of time that is used is usually a year, so
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that T is expressed in years. The corresponding continuously compounded annual

interest rate RT is given implicitly by the equation

V2 = eRTTV1

or explicitly by RT = (1/T ) log(V2/V1). The corresponding discretely compounded

rate RdT is obtained from

V2 = (1 +RdT )TV1.

Given the initial capital V1 and the maturity T , it is equivalent to specify either the

final amount V2 or (for instance) the discretely compounded annual interest rate,

since one can be computed from the other and vice versa. To express final capital

V2 in terms of a discretely compounded annual rate is an example of a quoting

convention. Zero-coupon bonds are also known as discount bonds because the value

at current time 0 of a zero-coupon bond with face value 1 that matures at time T

gives exactly the discount factor that must be applied to a cashflow that will occur

in T years from now.

When bonds are issued by companies or by governments as a means of financing

their activities, they are usually coupon-paying bonds rather than zero-coupon bonds.

For instance the Dutch government might issue a 5-year bond with 4% coupons

paying annually. For a face value of, say, 100 euros, such a bond will pay 4 euros

one year after its initiation, another 4 euros after two, three, and four years, and

104 euros at the time of maturity after five years. The face value of the bond is

used to compute these cashflows. The actual market value of a coupon-paying bond

depends on the current term structure. A coupon-bond can be viewed as a portfolio

of zero-coupon bonds; for instance, the 5-year bond with 4% annual coupon and

face value 100 can be considered as a portfolio consisting of a one-year zero-coupon

bond with face value 4 euro, a two-year zero-coupon bond with face value also 4

euro, and so on, and finally a 5-year zero-coupon bond with face value 104 euro.

Therefore, if the prices of zero-coupon bonds of all maturities are known, then the

prices of coupon-paying bonds are also known.

When party A sells a zero-coupon bond to party B, this is effectively the same

as that party B provides a loan to party A which will be paid back with interest

by party A at the time of maturity of the bond. A variation of this theme is the

forward rate agreement. An FRA also involves two cashflows, one from party B to

party A and one in the other direction; the difference is however that both cashflows

take place in the future, say at times T1 and T2. The contract implies a loan from

party B to party A which will be effectuated at time T1 rather than at the time

at which the contract is agreed. The amount that will be paid back at time T2 is

already specified at the time, say 0, at which the contract is agreed. In other words,

the interest rate that will be paid by party A is fixed at time 0. Such an agreement
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could be useful for instance when an institution already knows that it will need a

loan at a given later time T1, and the institution prefers to have the interest rate

set already, rather than to wait and see at which rates loans will be available at

time T1. In a forward rate agreement, there is no cashflow at the time at which the

contract is entered; the only cashflows are V1 at time T1 and V2 at time T2 in the

opposite direction. The value of the contract at time 0 should therefore be zero.

This means that the equality P (T1)V1 = P (T2)V2 should hold, where P (T1) is the

discount factor (at time 0) for maturity T1 and P (T2) is the discount factor (at time

0) for maturity T2. The forward rate, i.e. the interest rate that is implied by the

ratio V2/V1 and the time difference T2 − T1, is therefore determined by the current

term structure.

Many interest rate products are designed to provide protection against high

interest rates. Suppose for instance that a company has a loan with variable interest

rate, which may be renewed say every year on the basis of the current one-year rate.

The company might be interested in a contract that effectively limits its future

interest payments to a given maximum. Suppose that the desired maximum is 5%

and that the principal of the loan is one million euro. To achieve the required

protection for the interest payment that is to be made say on January 1 of year

t+ 1, the company should receive on January 1 of year t+ 1 the amount by which

the interest rate payment that is to be made at January 1 of year t+ 1 (namely the

one-year discretely compounded interest rate as it is derived from the term structure

at January 1 of year t) minus 50 000 euro, if the result of the subtraction is positive.

The contract is therefore similar to a call option, except that the underlying quantity

is now a future interest rate rather than a future stock price. Such a contract which

provides protection for a single interest payment is called a caplet. This name derives

from the term interest rate cap that is used for a series of such contracts, providing

protection during a period in which several interest payments are to be made. In

addition to interest rate caps, there exist also interest rate floors which provide

protection in the opposite direction. Caps become more valuable when interest rates

go up, and floors become more valuable when interest rates go down; depending on

the period that is specified in a cap or floor contract, there will be sensitivity in

particular to certain parts of the term structure. These contracts may therefore in

general be of interest to parties who would would like to modify their exposure to

particular changes of the term structure. Further refinements may be achieved by

making use of options on caps and floors; these are known as captions and floortions

respectively. These are instruments that provide the holder for instance with the

right, but not the obligation, to enter into a cap contract with specified features

(coverage period, cap rate, etc.) at a specified time in the future.

There are also term structure products that effectively replace a loan with vari-

able interest rate by a loan with fixed interest rate for a certain period. These
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instruments go by the name of interest rate swaps or just simply swaps. Swaps

are very popular instruments, since they make it possible to exchange short-term

funding effectively by long-term funding, or vice versa. In a swap contract, party

A (called the payer) pays a fixed interest rate on a given principal amount to party

B, while party B (called the receiver) pays a floating rate on the same amount to

party A. Only interest payments are made between the two parties; the principal

amount is only used as a reference and is not actually exchanged, so that one speaks

of a notional principal. The dates at which payments are made are known as tenor

dates. The floating rate payment that is to be made at tenor date Ti is usually

determined by the rate that holds at time Ti−1 for bonds that will mature at time

Ti. In other words, the fixing date is Ti−1, while the payment date is Ti. In this

way, the floating rate payments replicate the costs of roll-over short-term funding.

The fixed rate that is paid by party A is called the swap rate. In a standard swap

contract, this rate is chosen in such a way that the value of the contract at the time

of initiation is zero; the swap rate that achieves this is called the par swap rate. At

first sight it may seem that, while the current value of the fixed-rate payments (as

a function of the swap rate) is easy to obtain from the current term structure, the

same may not hold for the floating-rate payments, since these refer to future interest

rates which are not known at the time at which the contract is agreed. However,

the floating-rate payments can be generated by a strategy of which the cost can

be determined on the basis of the term structure at the time of initiation of the

contract. This strategy works as follows.

Suppose that the tenor dates are T0 = 0, T1, . . . ; the last tenor date is Tn. Let a

notional principal be given, say one million euro. Suppose that at time T0 an initial

capital of one million euro is available. The capital can be invested at time T0 in

zero-coupon bonds that will mature at time T1. At time T1, the investment generates

an interest payment whose size is equal to the interest rate that holds at time T0

for the period until T1, times the principal of one million euro. This interest rate

payment exactly covers the first floating interest payment in the swap contract. At

time T1, the principal amount of one million euro is available for reinvestment and

can be used to buy bonds that will mature at time T2. The interest rate payment

that is received at time T2 is then equal to the rate for maturity T2 as it held at

time T1, times the principal of one million euro. Again this is exactly equal to the

floating rate payment that is to be made as a result of the swap contract. This goes

on until the final tenor date Tn. This reasoning shows that it is possible in principle1

to generate the floating interest rate payments by borrowing the principal at time

T0 and returning it at time Tn. The cost of this strategy is the difference between

1Implementation of the strategy as described may not be so easy due to the limited availability
of default-free zero-coupon bonds with a given maturity date. However, the strategy serves only as
part of a valuation argument and does not need to be actually carried out.
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the value of one million euro now and the value now of one million euro to be paid

at time Tn. By this argument, the value of the “floating leg” of a swap contract is

(1−P (Tn))V where P (Tn) is the discount factor for maturity Tn and V denotes the

notional principal.

The value of the “fixed leg” is equal to (
∑n

i=1 P (Ti))r
swV where rsw is the swap

rate. From the valuation of the floating leg as described above, it follows that the

par swap rate is given by

rsw =
1− P (TN )∑N
i=1 P (Ti)

. (5.1)

In particular, the par swap rate is completely determined by the term structure at

the time of initiation of the contract; no model for the evolution of the term structure

is required. In fact the relation between swap rates and default-free discount factors

is often used in reverse, as a way of determining discount factors from swap rates

that are observed in the market, rather than vice versa. The reason for this is

that credit risk (the risk of default of the counterparty) plays a role especially in

the pricing of long-term bonds, whereas this type of risk is less of an issue in swap

contracts since the principal is not exchanged. The mutual relation between swap

rates and discount factors is worked out in a special case below in Section 5.2.4.

Options on swap contracts, known as swaptions, are very popular as well. A

swaption gives the holder the right, but not the obligation, to enter into a specific

swap contract at a specified time in the future. In a swaption contract, there is an

option maturity date which is the time at which the holder has to decide whether or

not to exercise the right to enter into the swap, and the swap maturity date which

is the last date for interest payments as a result of the swap contract if the option is

indeed exercised. The tenor dates for payments between the option maturity date

and the swap maturity date are usually standardized (say, floating-rate payments

every three months and fixed-rate payments every six months). For instance, a

“5-by-10” swaption has an option maturity date of five years, and if the option is

exercised will lead to swap payments during ten years. The specifications of the

swap contract include furthermore the fixed rate that will be paid. The swap rate

that is agreed in a swaption contract is similar to the strike in a call or a put option

on a stock; it is a contract parameter that influences the value of the option. In

contrast to swaps, the value of swaptions cannot be derived from the current term

structure alone.

Credit risk plays an important role in the valuation of some term structure

products. Bonds that have the same time to maturity and the same coupon rate

can still have very different values in the market, depending on the credit status

of the issuer. Naturally, a discount will be applied to the value of a bond that is

issued by a company if investors believe that there is a nonnegligible probability

that the company will go into default before the time of maturity, so that the bond
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will redeemed only partly or not at all. This means that an issuer of low credit

status has to pay a higher effective interest rate than the rate paid by an issuer that

is considered completely safe. The difference between these interest rates (which

may depend on maturity) is called the credit spread. Credit issues may be avoided

or mitigated in interest rate contracts for instance by the posting of collateral.

There are also instruments available that specifically target credit risk, such as

credit default swaps. Modeling of credit risk is a subject of its own which will not

be covered in this chapter.

5.2 Term structure descriptions

The term structure of interest rates can be represented in several different ways. In

this section we discuss the four most common representations: the discount curve,

the yield curve, the forward curve, and the swap curve. We will assume continuous

compounding throughout, since this is convenient for theoretical purposes; in prac-

tice however, discrete compounding is often used. There are discretely compounded

analogs of all of the formulas presented below.

The simplest product that can be used to determine the interest rate for a

given maturity T is the default-free zero-coupon bond that is certain to pay a given

amount at time T and that produces no other cashflows. In practice, bonds are

usually coupon-paying; as already noted above, such contracts can be viewed as

portfolios of zero-coupon bonds. The term “bond” when used below without further

qualification refers to a default-free zero-coupon bond.

In this section, we consider different representations of the term structure at a

given moment of time. Without loss of generality we can let this moment be 0.

Note that, with this convention, the parameter T denotes both time of maturity

and time to maturity. Upon conversion to a general time t, the parameter T must

be replaced by T − t in all instances where T denotes time to maturity. To simplify

notation, the subscript 0 denoting current time will usually be suppressed in this

section.

5.2.1 The discount curve

The value of a default-free, zero-coupon bond maturing at time T , relative to the

value of its principal, is a dimensionless number called the (riskless) discount factor

for maturity T . We will use the notation P (T ) for this quantity. The curve that

is obtained by looking at the values of the discount factor for different maturities

T is called the discount curve. This is one of the possible representations of the

term structure. In a sense it is the most basic representation; the discount factor is

defined independently of any compounding conventions.
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Under the assumption that cash can be stored costlessly, an arbitrage opportu-

nity can be constructed if the discount factor for maturity T2 exceeds the discount

factor for maturity T1, with T1 < T2. This is done as follows. At time 0, buy a bond

that pays 1 at time T1, and sell a bond that pays 1 at time T2. If P (T2) > P (T1), this

produces a net gain at time 0. At time T1, store the amount 1 that is received, and

use it at time T2 to fulfill the commitment from the sold bond; no obligations remain.

It follows that, under the assumption of costless storage of cash, the discount curve

must be nonincreasing. Other requirements that follow from absence of arbitrage

(even without the assumption of costless storage of cash) are that P (T ) > 0 for all

T ≥ 0, and P (0) = 1. Empirically it is found that the discount curve is always quite

smooth, so that for theoretical purposes one may reasonably assume that the curve

is differentiable.

5.2.2 The yield curve

The (continuously compounded) yield for a given maturity T > 0, denoted by R(T ),

is defined as the continuously compounded constant interest rate that is implied by

the discount factor P (T ). That is to say, the number R(T ) is the solution of the

equation

P (T ) = e−R(T )T

which is given in explicit form by

R(T ) = − 1

T
logP (T ). (5.2)

The definition above cannot be applied as such at T = 0, since logP (0) = 0. The

value of R(0) is defined by taking the limit as the time of maturity T tends to 0:

R(0) = − lim
T↓0

logP (T )

T
= −P

′(T )

P (T )

∣∣∣∣∣
T=0

= −P ′(0). (5.3)

The quantity defined above is called the short rate; it is the instantaneous rate of

growth of riskless capital. The short rate is an important theoretical notion. In

practice, the rates on loans of very short maturities (overnight loans) are affected

by various factors that term structure models usually do not aim to cover, so that

the three-month rate is often considered to provide a better proxy for the short rate

than the overnight rate. The yield curve is the curve that is obtained by plotting

R(T ) as a function of T . This is the most common representation of the term

structure.

It was noted above that, under the assumption that cash can be stored at no

cost, the discount curve must be nonincreasing. This implies in particular that

P (T ) ≤ P (0) = 1 for all T ≥ 0, and hence that the yields for al maturities are
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nonnegative. However, a nonnegative yield curve does not always correspond to a

nonincreasing discount curve. Differentiating the relation R(T )T = − logP (T ), we

find

R′(T )T +R(T ) = −P
′(T )

P (T )

so that the requirement that the discount curve should be nonincreasing is satisfied

if and only if the corresponding yield curve satisfies

−R′(T ) ≤ 1

T
R(T ) (5.4)

for all T > 0. This means that the yield curve cannot decrease too steeply.

5.2.3 The forward curve

The idea of a forward rate was already introduced above in connection with a dis-

cussion of forward rate agreements. Assume that party A will pay to party B the

amount V1 at time T1 and that party B will pay to party A the amount V2 at time

T2 > T1. Suppose moreover that the relative sizes of the volumes V1 and V2 have

been chosen to make the current value of the contract equal to zero, that is,

P (T1)V1 = P (T2)V2. (5.5)

The forward rate, denoted by F (T1, T2), is the rate that is implied by the quotient

V2/V1, which is equal to P (T1)/P (T2) according to the formula above, and the time

difference T2 − T1. Under our convention of continuous compounding, this means

that the forward rate is determined from the following equation:

e−R(T1)T1eR(T2)T2 = eF (T1,T2)(T2−T1).

The explicit form is

F (T1, T2) =
R(T2)T2 −R(T1)T1

T2 − T1
. (5.6)

An alternative way of writing the above relations is

eR(T1)T1eF (T1,T2)(T2−T1) = eR(T2)T2 .

This shows that, if the yield curve is increasing, the forward rate can be looked at

as a “catch-up rate” which speeds up the growth of capital so that growth during

time T1 at the (low) rate R(T1) followed by growth during time T2 − T1 at the

rate F (T1, T2) leads to the same final capital as growth at the (higher) rate R(T2)

during time T2. Especially at longer maturities, a moderate increase of the yield

curve therefore leads to high values of forward rates. Conversely, if the yield curve
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is decreasing, the forward rate can be viewed as a slow-down rate. When the yields

for maturities T1 and T2 are the same, say R(T1) = R(T2) = R, then the forward

rate corresponding to maturities T1 and T2 is equal to R as well.

If for a given time of maturity T we take T1 = T and T2 = T + ∆T and let

∆T tend to 0, then both the numerator and the denominator in the quotient at the

right hand side of (5.6) tend to 0. The quotient itself tends to a finite limit which

is called the instantaneous forward rate for maturity T :

F (T ) = lim
∆T→0

R(T + ∆T )(T + ∆T )−R(T )T

∆T
=

d

dT
(R(T )T ) = R′(T )T +R(T ).

(5.7)

Since R(T )T = − logP (T ), we can also write

F (T ) = − d

dT
logP (T ) = −P

′(T )

P (T )
. (5.8)

Conversely (using P (0) = 1), the discount rates can be expressed in terms of the

forward rates by

P (T ) = exp
(
−
∫ T

0
F (t) dt

)
(5.9)

The curve formed by the instantaneous forward rates is called the forward curve.

The instantaneous forward rate for maturity T is also simply just called the forward

rate for maturity T .

Note that F (0) = R(0), so that the left endpoint of the forward curve is given

by the short rate, just as it is the case for the yield curve. Since F (T ) = d
dT (R(T )T )

and (R(T )T )|T=0 = 0, the yields can be expressed in terms of the forward rates by

R(T ) =
1

T

∫ T

0
F (t) dt. (5.10)

In other words, the yields for different maturities can be viewed as cumulative

averages of the forward rates.

It was argued above that, under the assumption of costless storage of cash, there

is a certain constraint on the yield curve that must be satisfied to prevent a simple

arbitrage opportunity. This is the condition that the yield curve should satisfy to

make sure that the corresponding discount curve is nonincreasing. It is seen from

(5.8) (or from (5.9)) that the corresponding condition in terms of the forward curve

is just that the forward rates for all maturities should be nonnegative. This is a

simpler condition than the requirement (5.4) in terms of the yield curve.
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5.2.4 The swap curve

The fourth representation of the term structure that we will discuss is constructed

from swap contracts. As discussed in Section 5.1, the (non-annualized) par swap

rate in a swap contract is given implicitly by the equation

1− P (TN ) = rsw
n∑
i=1

P (Ti). (5.11)

Rewriting this equation in the form

1 = rsw
n∑
i=1

P (Ti) + P (Tn)

leads to another interpretation: for a coupon-paying bond with face value 1 that

matures at time Tn and that provides coupon payments with a coupon rate rsw at

dates T1, . . . , Tn, the left hand side represents its face value, while the right hand

side represents the market value of the bond. That is to say, the par swap rate is

equal to the par coupon rate, which is defined as the coupon rate that needs to be

paid so that the market value of the bond is equal to its face value. The par coupon

rate is also known as the par yield.

The value of the floating leg in a swap contract only depends on the final time

of maturity of the contract TN , but the value of the fixed leg depends on the choice

of the tenor dates. In keeping with the spirit of continuous compounding, we may

choose to work with the limit situation in which the fixed payments are made con-

tinuously. The value of the fixed leg is then equal to
∫ T

0 P (t)rV dt when the con-

tinuously paid rate is equal to r. The continuously-paid par swap rate for maturity

T , denoted by S(T ), is then defined as the value of the continuously paid fixed rate

that makes the present value of the swap contract with final maturity T equal to 0:

S(T ) =
1− P (T )∫ T
0 P (t) dt

. (5.12)

Using (5.8) and the fact that P (0) = 1, we can write

1− P (T ) = −
∫ T

0
P ′(t) dt =

∫ T

0
P (t)F (t) dt

so that the definition of the swap rate may also be written as

S(T ) =

∫ T
0 P (t)F (t) dt∫ T

0 P (t) dt
. (5.13)

This may be compared to (5.10). Whereas the yields for different maturities can be
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considered as unweighted cumulative averages of the forward rates, the swap rates

are weighted cumulative averages. The weights are provided by the discount factors,

which are higher for short maturities. Therefore the swap rates are influenced more

by the short end of the forward curve than the yields, the difference being noticeable

especially for longer maturities. When the forward curve is increasing as is usually

the case, the swap curve lies below the yield curve; since the yield curve is increasing

when the forward curve is increasing, this may also be described by saying that the

swap rates lag behind the yields, so that for instance the 20-year swap rate might

be equal to the 15-year yield.

The relation between swap rates and forward rates can also be written in a

different way. By computing the derivatives with respect to T of both sides of the

relation

S(T )

∫ T

0
P (t) dt = 1− P (T )

(another form of (5.12)), we find

S′(T )

∫ T

0
P (t) dt+ S(T )P (T ) = −P ′(T ) (5.14)

which implies, by (5.8), that

F (T ) = S(T ) +

∫ T
0 P (t) dt

P (T )
S′(T ). (5.15)

This may be compared to (5.7). It follows from (5.7) that the forward curve lies

above the yield curve at maturities where the yield curve is increasing, and lies

below the yield curve at points where the yield curve is decreasing. The relation

(5.15) implies that the forward curve has the same property with respect to the

swap curve.

5.2.5 Summary and examples

A summary of the most important relations between the various representations of

the term structure of interest rates is provided in Table 5.1. Each representation

describes the term structure completely. All formulas have analogs for the case

of discretely compounded interest. The discrete formulas do not look as nice as

their continuous counterparts, but in practice they are important because discrete

compounding is used in many types of contracts. The relations between yields,

forward rates, and swap rates are illustrated in a few specific examples in Figs. 5.1–

5.3. The examples also illustrate several different parametrizations that are popular

in the literature. The parametrizations can be described either in terms of yield

curves, forward curves, or swap curves; the formulas are simplest when the forward
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in terms of
discount factors

in terms of
yields

in terms of
forward rates

P (T ) exp(−TR(T )) exp
(
−
∫ T

0 F (t) dt
)

R(T ) − 1

T
logP (T )

1

T

∫ T

0
F (t) dt

F (T ) −P ′(T )/P (T ) (TR(T ))′

S(T )
1− P (T )∫ T
0 P (t) dt

no simple formula

∫ T
0 P (t)F (t) dt∫ T

0 P (t) dt

r −P ′(0) R(0) F (0)

Table 5.1: Relations between term structure representations under continuous compound-
ing. The symbols P (T ), R(T ), F (T ), and S(T ) refer to discount factors, yields, forward
rates, and swap rates respectively; r denotes the short rate.

curve is used. The Vasicek parametrization, associated to the Vasicek model, is

given by

FVas(T ) = re−aT + b
(
1− e−aT

)
− σ2

2a2

(
1− e−aT

)2
. (5.16)

The model has one parameter that is allowed to vary in time to accommodate

changes in the yield curve; this parameter is denoted by r since it coincides with the

short rate. In the Nelson-Siegel parametrization, proposed by Charles Nelson and

Andrew Siegel in 1987, the forward curve is of the form

FNS(T ) = β0 + β1e
−aT + β2aT e

−aT . (5.17)

The three parameters β0, β1 and β2 are measured in the same units as interest rates.

The parameter a is positive; it can be thought of as defining a unit of time since it

always occurs in the combination aT . For a fixed value of a, the expression in (5.17)

can be viewed as a linear combination of three basis functions, namely the constant

function 1, the exponential function e−aT which shows a declining behavior, and the

function aTe−aT which is “hump shaped” since it starts from the value 0 at T = 0,

increases to a maximum at T = 1/a, and then asymptotically decreases to 0 again.

An extension of the Nelson-Siegel parametrization was proposed by Lars Svensson

in 1995:

FNSS(T ) = β0 + β1e
−a1T + β2a1T e

−a1T + β3a2T e
−a2T . (5.18)

This is called the Nelson-Siegel-Svensson model, or just the Svensson model.
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It should be noted that the term “model” is used here as another word for

“parametrization”. Both the Nelson-Siegel parametrization and its extension by

Svensson were originally formulated just as ways of capturing the term structure

at a given moment in time, without a specification of a model for the evolution of

the parameters in time. However (see Exc. 5.8.9), the affine term structure models

that are discussed in Section 5.6.2 below can lead to representations that are similar

to (5.17) or (5.18) with constant parameters ai and parameters βi that can vary in

time.

0 5 10 15 20 25 30
2%

2.5%

3%

3.5%

4%

time to maturity (years)

Vasicek

 

 

yield curve

forward curve

swap curve

Figure 5.1: Yield curve in a Vasicek parametrization, with corresponding forward curve
and swap curve. The parameter values are: a = 0.4, b = 0.035, r = 0.025, σ = 0.01.
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Figure 5.2: Yield curve in a Nelson-Siegel parametrization, with corresponding forward
curve and swap curve. The parameter values are: a = 0.3, β0 = 0.035, β1 = −0.01,
β2 = 0.02.

171

OPEN PRESS TiU



Model-free relationships The term structure of interest rates

0 5 10 15 20 25 30
2%

2.5%

3%

3.5%

4%

time to maturity (years)

Nelson−Siegel−Svensson

 

 

yield curve

forward curve

swap curve

Figure 5.3: Yield curve in a Nelson-Siegel-Svensson parametrization, with corresponding
forward curve and swap curve. The parameter values are: a1 = 0.4, a2 = 0.2, β0 = 0.035,
β1 = −0.01, β2 = 0.02, β3 = −0.02.

5.3 Model-free relationships

The previous section has focused on what might be called the “cross-sectional” di-

mension of the term structure; we looked at interest rates as a function of maturity

at a given point in time. To enable valuation of term structure derivatives such as

swaps and caps, one also needs to consider the “time series” dimension. The ter-

minology is borrowed from econometric panel data analysis. Unlike what is usually

the case in panel data, in term structure models the two dimensions are in fact

closely intertwined due to the assumption of absence of arbitrage. In this section,

we concentrate on relationships that can be proved purely on the basis of absence

of arbitrage, without any further model assumptions.

It is sometimes stated that the instantaneous forward rate for maturity T reflects

market expectations concerning the level of the short rate at time T , so that in

fact the forward curve gives the market’s prediction for the evolution of the short

rate. This is called the expectations hypothesis. As always, one has to be careful in

interpreting prices as predictions; the purpose of markets is to equilibrate demand

and supply, rather than to implement a statistical procedure. Risk premia will often

generate a bias with respect to expectations under the real-world measure.

All relations obtained in this section are consequences of the Fundamental Theo-

rem of Asset Pricing as expressed through the numéraire-dependent pricing formula

(3.25), with different choices of the numéraire. Let us start with what might be

called the “generic” choice of a numéraire, namely the money market account. By
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definition, the value of the money market account Mt follows the process given by

dMt = rtMt dt (5.19)

where rt is the short rate at time t. By the numéraire-dependent pricing formula,

the price at time 0 of a bond that pays one unit of currency at time T satisfies

P0(T )

M0
= EQM

[
PT (T )

MT

]
= EQM

[ 1

MT

]
since PT (T ) = 1 by definition. The measure QM is the risk-neutral measure, i.e.

the martingale measure that corresponds to taking the money market account as a

numéraire. From the relation above, we have

P0(T ) = EQM
[M0

MT

]
. (5.20)

An expression that is stated more explicitly in terms of the short rate can be obtained

from (5.19) in the following way. Writing mt := logMt, we have from Itô’s rule

dmt = rt dt (5.21)

so that

mt = m0 +

∫ t

0
rs ds.

From this, one finds

Mt = M0 exp
(∫ t

0
rs ds

)
. (5.22)

In this way, the following relation is established:

P0(T ) = EQM
[
exp
(
−
∫ T

0
rt dt

)]
. (5.23)

Here we have a relationship between the current term structure on the one hand,

and on the other hand expectations (under QM ) relating to the future evolution

of the short rate. In general however it is not just the expectation of future short

rates which plays a role, but also their variance and in fact their entire distribution,

because expectation is taken of a nonlinear function (namely the exponential) of the

random variable −
∫ T

0 rs ds. More generally than (5.23), one can also write

Pt(T ) = EQM
t

[
exp
(
−
∫ T

t
rs ds

)]
. (5.24)
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to give the term structure at an arbitrary time t. The expression above shows that

any model under QM for the evolution of the short rate in fact completely defines a

model for the evolution of the term structure as a whole.

Instead of the money market account, one can also take the bond that matures

at a given time T as a numéraire. The corresponding martingale measure is called

the T -forward measure; this measure is denoted by QT . For any positive number

∆T , we can write the following relation:

P0(T + ∆T )

P0(T )
= EQT

0

PT (T + ∆T )

PT (T )
= EQT

0 PT (T + ∆T ) (5.25)

since PT (T ) = 1 by definition. The above relation is an application of the numéraire-

dependent pricing formula, with Pt(T+∆T ) as the asset and Pt(T ) as the numéraire.

Subtract 1 from both sides of the equation above, divide by ∆T , and take the limit

as ∆T tends to zero. We obtain on the left hand side

lim
∆T↓0

P0(T + ∆T )− P0(T )

P0(T )∆T
=
P ′0(T )

P0(T )
= −F0(T )

and on the right hand side

lim
∆T↓0

EQT
0

PT (T + ∆T )− 1

∆T
= EQT

0 P ′T (T ) = −EQT
0 rT .

Therefore, we arrive at the following relation:

F0(T ) = EQT
0 rT . (5.26)

In other words, the forward rate for maturity T is equal to the expected value

of the short rate at time T under the martingale measure corresponding to the

bond maturing at time T . It has to be considered that this martingale measure

incorporates in general a risk adjustment, so that the expectation under the objective

(“real-world”) measure is not necessarily the same. The relation (5.26), like the

bond price equation (5.23), establishes a connection between the shape of the term

structure and its stochastic evolution.

Another relation that can be obtained using the T -forward measure is the follow-

ing. For given maturities T1 and T2 with T2 > T1, use the T2-bond as a numéraire

and consider the price at time 0 of the T1-bond. On the basis of the numéraire-

dependent pricing formula, we can write

P0(T1)

P0(T2)
= EQT2

PT1(T1)

PT1(T2)
= EQT2

1

PT1(T2)
. (5.27)

Consider now a floating-rate payment as would occur in a swap contract, when T1
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and T2 refer to successive tenor dates. The payment that is to be made at time T2

is the interest that is received at time T2 when the notional principal is invested at

time T1 in bonds that mature at time T2. The total amount received at time T2 for

an investment of V at time T1 is (1/PT1(T2))V , and the part of this which represents

interest is CT2 := (1/PT1(T2))V − V . The value of this uncertain payoff at time 0

can be found from the numéraire-dependent pricing formula:

C0

P0(T2)
= EQT2

( 1

PT1(T2)
− 1
)
V.

According to (5.27), the right hand side is equal to (P0(T1)/P0(T2)−1)V . Therefore

we find

C0 = (P0(T1)− P0(T2))V.

This simple expression was also found in Section 5.1 on the basis of a replication

argument. The expression above applies to a single floating-rate payment. The

value of a series of floating-rate payments in connection with a number of successive

tenor dates T0 = 0, T1, . . . , Tn is given by

(P0(0)− P0(T1))V + (P0(T1)− P0(T2))V + · · ·+ (P0(Tn−1 − P0(Tn))V

= (1− P (Tn))V

where use is made of the relation P0(0) = 1 and of the telescope rule. Again this

derivation on the basis of the numéraire-dependent pricing formula, with a suitable

choice of the numéraire, confirms the expression that was already derived above on

the basis of a replication argument.

5.4 Requirements for term structure models

Dynamic term structure models are used to generate scenarios for the future devel-

opment of interest rates. When these models are formulated under the real-world

measure, they can be used for risk management purposes. Term structure mod-

els that are formulated under a martingale measure that corresponds to a chosen

numéraire are used for pricing purposes. Such models can also be obtained from

models under the real-world measure by incorporating a market price of risk; in

practice however, one often goes immediately to a specification under a martingale

measure. The number of traded assets in the interest-rate market is theoretically

infinite, since zero-coupon bonds with different maturity dates are independent as-

sets.2 Term structure models may aim at describing the evolution of the term

2The term “independent assets” is used here in the sense that the price of any one cannot be
written as a deterministic function of the prices of the others using only absence of arbitrage.
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structure as a whole, or they may have the more modest ambition of describing only

the evolution of certain term structure products. The latter models will be referred

to below as “partial models”.

One way to formulate a term structure model is to specify a state equation

dXt = µX(t,Xt) dt+ σX(t,Xt) dWt (5.28)

where Wt is a Brownian motion under the real-world measure, together with a bond

pricing function πT (t, x) corresponding to each maturity T ≥ t:

Pt(T ) = πT (t,Xt). (5.29)

To prevent arbitrage in this model, there should exist a function λ(t, x) such that

for all T the equality µT − rπT = σTλ is satisfied. Here, µT and σT refer to the

drift and volatility of the price of the bond with maturity T . One then has a fully

dressed-up model that can be used for pricing term structure products as well as for

risk management purposes.

An alternative way to arrive at a specification of a term structure model is to

start with a specification of the process of the short rate. When bond prices are

subsequently obtained from the formula (5.23), absence of arbitrage is automati-

cally guaranteed. Given that the formula (5.23) calls for the computation of an

expectation under the risk-neutral measure QM , it can be convenient to start from

a specification under that measure. Depending on the specification of the short rate,

it may or may not be possible to obtain an explicit expression from (5.24). A well-

known example of a model for which it is indeed possible to get such an expression

is the Vasicek model that was already introduced in Chapter 3. The process for the

short rate may be specified by means of a state differential equation of the usual

form dXt = µX dt+σX dW , in combination with a specification of the short rate at

time t of the form rt = r(t,Xt) where r(·, ·) is a function of 1 + n variables. This is

a general class of models. The term “short rate model” is used for models in which

the short rate acts as the only state variable.

In addition to absence of arbitrage, there are several other conditions which a

good term structure model should fulfill. Here are some of the questions that may

be asked:

(i) is the model capable of representing the current term structure

(ii) is the model capable of reproducing current prices of term structure derivatives

(iii) does the model produce plausible future term structures

(iv) is it easy to to compute prices of popular term structure derivatives such as

caps and swaptions.
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It is not easy to reconcile all these requirements, due in part to the fact that the

condition of absence of arbitrage provides a connection between the shape of the

term structure on the one hand and its dynamics on the other hand. There is no

single term structure model that has such a dominant position as the standard

Requirements (i) and (ii) in the above list are often met (at least approximately)

by calibration of a given term structure model, that is, by adapting the parameters

of the model in such a way that the prices of term structure products as produced

by the model match prices that are observed in the market as closely as possible.

A good term structure model is one that is able to match observed prices to a

high degree of accuracy with a relatively small number of calibrated parameters,

and which is such that the parameter values do not change dramatically over time

when they are recalibrated to new data. Large jumps of parameter values under

recalibration are a sign of overparametrization.

If the purpose of calibration is just to match observed bond prices (rather than to

reproduce also the prices of term structure derivatives such as caps and swaptions),

then there is a relatively simple way to achieve exact calibration, starting from any

given term structure model. This method is based on the expression

F0(T ) = − d

dT
logEQM

[
exp
(
−
∫ T

0
rt dt

)]
(5.30)

which follows from (5.23) and (5.8). Note that this expression has a certain symme-

try; the operations on the left hand side of the expectation symbol are the inverses

of those that appear on the right hand side. In particular, if f(t) is a deterministic

function of time, then

− d

dT
logEQM

[
exp
(
−
∫ T

0
(rt + f(t)) dt

)]
= F0(T ) + f(T ). (5.31)

This means that any forward curve can be reproduced by adding a suitable deter-

ministic function of time to the short rate process. In this way, the “cross-sectional”

properties of a given model are adjusted by manipulating its “time series” behav-

ior, based on the connection between the two dimensions as expressed by (5.23) or

(5.30). In particular it is seen that bond prices can already be reproduced exactly by

a very simple model, namely the one that prescribes the short rate deterministically

by rt = F0(t), where F0(·) is the current forward curve.

5.5 Short rate models

The simplest interest rate models are the ones that have only one state variable.

The standard choice for the state variable in such models is the short rate itself. We

then speak of a short rate model. Models of this type assume that the short rate
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follows a Markovian process; in other words, the statistics of the future evolution

of the term structure are determined completely by the current value of the short

rate. This is strong simplification of reality. However, it should be kept in mind that

any model is a simplification of reality, and the choice of a model always involves a

balance between realism and simplicity.

Bond prices in a short rate model can be determined by the general formula

(5.24), or from the Black-Scholes equation. In the latter approach, when the equa-

tion µT −rπT = σTλ is written in explicit form, the following PDE for the functions

πT (t, r) emerges:

− ∂πT
∂t

= (µ− σλ)
∂πT
∂r

+ 1
2σ

2 ∂
2πT
∂r2

− rπT , πT (T, r) = 1 (5.32)

where we write µ instead of µX and σ instead of σX to make the notation a bit

lighter. All bond prices satisfy the same partial differential equation (the “term

structure equation”); the difference between the equations is only in the boundary

condition.

The term structure equation is specified by the three functions µ = µ(t, r),

σ = σ(t, r), and λ = λ(t, r). In fact the functions µ and λ only occur in the

combination µ− λσ so that there are many combinations of µ and λ that give rise

to the same term structure equation. The model still leaves freedom to consider

particular functional forms; for instance the well-known Vasicek model is obtained

by choosing

µ(t, r)− σ(t, r)λ(t, r) = a(b− r), σ(t, r) = c (5.33)

where a, b, and c are constants. Perhaps the most popular alternative short rate

model is the one that was proposed by John Cox, Jonathan Ingersoll and Stephen

Ross in 1985, and that is hence known as the Cox-Ingersoll-Ross model or as the

CIR model. The evolution of the short rate as specified in this model is

drt = a(b− rt) dt+ σ
√
rt dWt. (5.34)

For pricing purposes, this is usually taken as a model under the risk-neutral measure.

If (5.34) is interpreted as a real-world model, then it can be rewritten as a model of

the same form under QM if a suitable assumption is made concerning the price of

risk; for instance, it could be assumed that the price of risk is proportional to
√
rt.

Several possible choices for the risk-adjusted drift and volatility parameters in

short rate models have been proposed, which give rise to different shapes of the

term structure as expressed for instance by the yield curve. Given the drift and

the volatility parameters, the term structure in a short rate model is completely

determined by the current level of the short rate. For the evolution of the term

structure this means that the interest rates for all maturities are fully correlated;
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any given movement of the one-year rate, for instance, can only be accompanied by

one particular movement of the 20-year rate. More flexible models can be obtained

by increasing the number of state variables.

5.6 Affine models

A term structure model is said to be affine if the yield curves that it produces are

of the form

Rt(T ) = α(t, T ) + β(t, T )Xt (5.35)

where α(t, T ) is a scalar-valued function, β(t, T ) is a row vector of length n, and

Xt is an n-vector of state variables. If the model is time-homogeneous, then the

functions α(t, T ) and β(t, T ) depend on t and T only through the difference T − t.
The yield curve at any given time is then a linear combination of the functions α(T )

and β1(T ), . . . , βn(T ) (writing T now for the time to maturity), of which the first

always has coefficient 1, while the coefficients of the components of the row vector

β(T ) are stochastically varying state variables. Yield curves that are structured in

this way are obtained for instance from models of the form

dXt = (AXt + g) dt+B dWt, rt = h>Xt (5.36)

where A and B are constant matrices of sizes n× n and n× k respectively, g and h

are constant n-vectors, and Wt is a Brownian motion under the risk-neutral measure

QM . If the volatility matrix B is made dependent on the state variable Xt in such

a way that BB> is affine in Xt, then the associated term structure is still affine; an

example is the CIR model (5.34). In this section, however, the focus is on models

in which the volatility matrix is constant, as in (5.36).

5.6.1 Single state variable

If the dimension of the state variable in (5.36) is 1, then, by linear scaling, the state

variable can be made equal to the short rate. The resulting model is the Vasicek

model that was already discussed in Chapter 3:

drt = a(b− rt) dt+ σ dWt (5.37)

where Wt is a Brownian motion under the risk-neutral measure QM . An extended

version of the model will be considered in Section 5.6.3 below.

In Chapter 3 we started in fact with a specification of the Vasicek model under

the real-world measure. If it is assumed that the price of interest rate risk λ is
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constant, then the real-world model

drt = a(b− rt) dt+ σ dW P
t (5.38)

corresponds via the formula dWQM
t = λ dt + dW P

t to the model under QM that is

given by

drt = a(b− rt) dt+ σ(−λ dt+ dWQM
t )

= a(b− λσ

a
− rt) dt+ σ dWQM

t .

The model that is obtained in this way is indeed of the form (5.37), with the pa-

rameter b in the model under QM corresponding to the parameter b− λσ/a in the

model under P.

In principle it is possible (in an idealized world in which the Vasicek model gives

an accurate description of the short rate dynamics, and the price of risk is indeed

constant) to infer the value of the price of interest rate risk λ by combining pricing

data with time series data. Empirical work in this direction usually leads to negative

values of λ. As discussed in Section 3.6, this would mean that a positive increment

of the Brownian motion W P that appears in the equation (5.38) is associated to

bad news for the general investor. For instance, it can be noted that an increase of

interest rates implies a decrease of bond values.

The yield curve in the Vasicek model was already obtained in (4.67) and is

repeated here:

R0(T ) = b− σ2

2a2
+

(
r0 − b+

σ2

a2

)
1− e−aT

aT
− σ2

2a2

1− e−2aT

2aT
. (5.39)

The function (1 − e−aT )/(aT ) represents the average of the exponential function

e−at over the interval from 0 to T (that is to say, we have (1/T )
∫ T

0 e−at dt = (1 −
e−aT )/(aT )). The function therefore tends to 1 if T > 0 tends to zero, and its limit

as T tends to infinity is 0. From the formula above, it consequently follows that

lim
T→∞

R0(T ) = b− σ2

2a2
. (5.40)

In other words, the Vasicek model predicts that, while the yield curve varies in time,

it always converges to the same value for long maturities.3 When the limit value

3The same property is generally found in arbitrage-free term structure models. Reasons why
this should be so are discussed by Philip Dybvig, Jonathan Ingersoll and Stephen Ross in their
paper “Long forward and zero-coupon rates can never fall”, Journal of Business 69 (1996), 1–25.
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above is denoted by R0(∞), we can write

R0(T ) = R0(∞) + (r0 −R0(∞))
1− e−aT

aT
+

σ2

2a2

(1− e−aT )2

2aT
. (5.41)

For different values of the current short rate r0, different yield curves are obtained

as shown in Fig. 4.4.

The Vasicek model represents an attempt to explain the prices of all term struc-

ture products (not only bonds, but also swaptions, caps, and so on) at all times as

a function of just one variable, namely the short rate. Moreover, the form of this

function is determined by only three parameters. Calibration of the model therefore

requires some courage. On the basis of the theory of affine processes (see Section

2.6.3), it can be established that the covariance of rt and rt+h in the model (5.37)

for fixed h is given in the stationary situation by

cov(rt, rt+h) =
e−ah

2a
σ2. (5.42)

In particular, the standard deviation of the stationary distribution is σ/
√

2a. It

then follows from the above that the correlation coefficient between rt and rt+h in

the stationary situation is equal to e−ah. These quantities do not depend on the

parameter b, and so they are not affected by change of measure; in other words,

the real-world variance and covariance can be used to calibrate the parameters a

and σ. One possible approach therefore could be to work with interest rate data

for a particular period, and to use the observed standard deviation of the short

rates and the correlation coefficient for instance for h = 1 to find estimates of a

and σ. Alternatively, the parameter σ might be determined on the basis of the

observed short-term volatility of the short rate. In order to obtain an estimate for

the parameter b in (5.37), which incorporates the price of risk, one has to use pricing

information. For instance the relation (5.40) could be used. Many other approaches

are possible, and in a given concrete situation a choice should be made with an eye

on the purpose for which the model is going to be used. In applications with a short

time horizon, it is important to take the current shape of the term structure into

account, and then the parameters in the Vasicek model may be chosen on the basis

of curve fitting to ensure that a reasonable match with the current yield curve is

obtained.

5.6.2 Higher-dimensional models

To find a formula for bond prices under the general affine model (5.36), one can use

the formula (5.20) where M0 = 1. The process mt := logMt satisfies the stochastic

differential equation (5.21). Since the short rate process satisfies rt = h>Xt as
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specified in (5.36), the joint process of Xt and mt is described by

d

[
Xt

mt

]
=

([
A 0

h> 0

][
Xt

mt

]
+

[
g

0

])
dt+

[
B

0

]
dWt.

This is a linear stochastic differential equation, with deterministic initial conditions.

Consequently, the joint distribution of XT and mT is normal. Moreover, it follows

from the solution formulas in Section 2.6.3 (see (2.80) and (2.85)) that the expected

value of the vector consisting of XT and mT depends linearly on X0 and m0, whereas

the variance depends on T and on the system parameters, but not on the initial

conditions. Since m0 = 0 by definition, the expected values of XT and mT actually

depend on X0 only. Therefore, the expected value of mT is a linear function of X0

with coefficients that may depend on T , while the variance of mT is a function of

T and does not depend on X0. We also know that mT is normal; therefore the

money market account at time T , MT = exp(mT ), follows a lognormal distribution.

Applying the standard formula for the expectation of a lognormal variable, one finds

from (5.20) that the bond price P0(T ) in the model (5.36) is of the form

P0(T ) = exp
(
f0(T ) +

n∑
i=1

fi(T )X0,i

)
(5.43)

for certain functions f0(T ), f1(T ), . . . , fn(T ). The corresponding yield curve depends

in an affine way on the state variables:

R0(T ) = − 1

T

(
f0(T ) +

n∑
i=1

fi(T )X0,i

)
. (5.44)

Since nothing in the model depends on calendar time, time 0 is in fact a generic

point in time and T represents time to maturity. It is therefore confirmed that

(5.36) is an affine term structure model as defined at the beginning of this section.

The SDE that drives the coefficients and the functions that together form the yield

curve cannot be chosen independently of each other; quite to the contrary, the basis

functions for the yield curve are fixed once the SDE (under the risk-neutral measure)

has been chosen.

The solution formulas in Section 2.6.3 can be used to obtain explicit expressions

for the functions fi(T ) appearing in (5.43), using the fact that

exp

([
A 0

h> 0

]
t

)
=

[
exp(At) 0

h>
∫ t

0 exp(As) ds 1

]
. (5.45)

An alternative approach is to note that (5.43) gives expressions for arbitrage-free

asset prices, so that the no-arbitrage condition (3.80) must hold. The subscript T
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will be used to refer to the bond with maturity T . From (5.43) we have

πT (t, x) = exp
(
f0(τ) +

n∑
i=1

fi(τ)xi

)
, τ = T − t

where xi is the i-th component of the column vector x, and τ is the time to maturity.

The corresponding drift under the risk-neutral measure can be obtained from (3.7)

together with (5.36). We have

∂πT
∂t

(t, x) =
(
−f ′0(τ)−

n∑
i=1

f ′i(τ)xi
)
πT (t, x)

∂πT
∂xi

(t, x) = fi(τ)πT (t, x)

∂2πT
∂xi∂xj

(t, x) = fi(τ) fj(τ)πT (t, x).

Let f̄(t) denote the column vector with entries fi(t). One can then write, using

(3.7),

µT (t, x) =
[
−f ′0(τ)− f̄ ′(τ)>x+ f̄(τ)>(Ax+ g) + 1

2 f̄(τ)>BB>f̄(τ)
]
πT (t, x).

The condition (3.80) therefore becomes in this particular case:

−f ′0(τ)− f̄ ′(τ)>x+ f̄(τ)>(Ax+ g) + f̄(τ)>BB>f̄(τ) = h>x.

The relation must hold for all x. Consequently, the following two equations must

both be satisfied:

f̄ ′(τ) = A>f̄(τ)− h (5.46a)

f ′0(τ) = f̄(τ)>g + 1
2 f̄(τ)>BB>f̄(τ). (5.46b)

Moreover, the condition πT (T, x) = 1 for all x implies that f0(0) = 0 and f̄(0) = 0.

It is seen that the vector function f̄ can be found by solving a system of n linear

differential equations. Afterwards, the scalar function f0 is obtained by integration.

The two equations (5.46) describe the link between the “cross-sectional” functions

f0 and f̄ and the “time series” model (5.36) for the state variables which, as seen

in (5.43), serve as weights associated to the functions.

Since the coefficients follow a normal distribution, the possibility that interest

rates take arbitrarily large negative or positive values is not excluded by affine

models, although the associated probabilities are small for usual choices of the model

parameters. Perhaps a bigger concern is that the number of parameters is usually

not enough to get an accurate match with the term structure as observed in the
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market at a given point in time. One possibility to bring more flexibility into the

model is to allow parameters to be time-dependent. This approach is discussed next.

5.6.3 The Hull-White model

The Vasicek model can produce only a limited range of term structures. Typically

it is not possible to choose the parameters in the model in such a way that bond

prices as determined from the model match the bond prices that are observed in

the market. The reason is simply that the model has only three parameters, while

there are bond prices for many different maturities. To accommodate all of those

bond prices, more parameters are required. An extension of the Vasicek model was

proposed in 1990 by John Hull and Alan White. In fact they proposed several

extensions, but the one that has become most popular has the form

drt = (θ(t)− art) dt+ σ dWt (5.47)

where θ(t) is a deterministic function of time, a and σr are constants, and Wt denotes

a process that is a Brownian motion under the risk-neutral measure. The model can

be looked at as an OU model with time-dependent reversion level given by θ(t)/a.

Since the short rate is the only state variable, the model can be categorized as a

short rate model.

Alternatively one can extend the Vasicek model by allowing a deterministic func-

tion of time to be added to the short rate process, as discussed in Section 5.4. This

leads to a model of the form

dXt = −aXt dt+ σ dWt, X0 = 0 (5.48a)

rt = Xt + f(t) (5.48b)

where Wt is as before a Brownian motion under the risk-neutral measure, and f(t)

is a differentiable deterministic function of time. The state variable is now not

the same as the short rate; therefore it is denoted by Xt rather than by rt. The

parameter b has been set equal to 0 in the above formulation, and the initial value

of the state variable has been set to 0 as well; this can be done because, as is seen

from the solution formula (2.79), nonzero values of these quantities only give rise

to a deterministic additive term in the solution, and such a term is already covered

by the function f(t). Computing the differential of rt from the above equations, we

obtain

drt = dXt + f ′(t) dt = (f ′(t)− aXt) dt+ σ dWt =

= (f ′(t) + af(t)− art) dt+ σ dWt
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which shows that the model (5.48) is the same as the model (5.47) provided that

f ′(t) + af(t) = θ(t) (t ≥ 0), f(0) = r0. (5.49)

More explicitly, this means that the relation between θ(t) and f(t) is given by

f(t) = e−atr0 +

∫ t

0
e−a(t−s)θ(s) ds. (5.50)

Therefore we can find θ(·) from f(·) or vice versa.

In order to see in what way a particular choice of the function f(t) in the model

(5.48) has an impact on the term structure associated to the model at time 0, we

can for instance compute the forward curve. From (5.30) and (5.48) it follows that

the forward curve that is produced by the model (5.48) at time 0 is given by

F0(T ) = f(T )− d

dT
log
[
EQM

[
exp

(
−
∫ T

0
Xs ds

)]]
. (5.51)

To obtain a more explicit expression on the basis of the model specification (5.48),

introduce a new random variable Zt by

Zt =

∫ t

0
Xs ds

and write just E instead of EQM for brevity. The evolution of the processes Xt

and Zt is given by (5.48a) and by the equation dZt = Xt dt; consequently, the

pair consisting of Xt and Zt follows a multivariate Ornstein-Uhlenbeck process. In

particular, Zt is normally distributed for all t. Since EXt = 0 for all t ≥ 0 as follows

from (5.48a), we also have EZt = 0 for all t. By the standard rule

E
[
eµ+σZ

]
= eµ+ 1

2
σ2

(Z ∼ N(0, 1)). (5.52)

for the expectation of a lognormal variable and because EZT = 0, we have

logE
[

exp(−ZT )
]

= 1
2 var(ZT ).

The variance of ZT can be computed by means of the formulas for linear SDEs that

have been discussed in Section 2.6.3. The joint equations for Xt and Zt are

d

[
Xt

Zt

]
=

[
−a 0

1 0

][
Xt

Zt

]
dt+

[
σ

0

]
dWt. (5.53)

Define

A =

[
−a 0

1 0

]
, B =

[
σ

0

]
. (5.54)
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Since X0 = 0 as well as Z0 = 0, the expression in formula (2.79) becomes[
Xt

Zt

]
=

∫ t

0
eA(t−s)B dWs. (5.55)

Computation shows that, with A as given in (5.54), we have

eAt =

[
e−at 0

1
a(1− e−at) 1

]
.

Therefore we have from (5.55)

ZT =

∫ T

0

1

a

(
1− e−a(T−s))σ dWs.

From the standard expression (2.49) for the variance of a stochastic integral with

deterministic integrand, we find that

varZT =

∫ T

0

(1

a

(
1− e−a(T−s))σ)2

ds =
σ2

a2

∫ T

0

(
1− e−as

)2
ds

where in the second expression the integral has been rewritten using a change of

variable from s to T − s. It follows that

d

dT
logE

[
exp(−ZT )

]
=

σ2

2a2

(
1− e−aT

)2
.

The expression (5.51) can now be written more explicitly:

F0(T ) = f(T )− σ2

2a2

(
1− e−aT

)2
. (5.56)

The expression shows how to construct the model in such a way that a given forward

curve is matched; namely, the function f(t) in the model should be taken equal to

f(t) = Fm0 (t) +
σ2

2a2

(
1− e−at

)2
where Fm0 (t) is the forward curve that is observed in the market. The constraint

f(0) = r0 is satisfied automatically, since the left end point of the forward curve

Fm0 (0) is equal to the short rate (see (5.7)). The observed forward curve Fm0 (T ) is

taken here as an input, and the model function f(t) is taken as an output.

In terms of the original model formulation (5.47), the calibration of the model

function θ(t) becomes

θ(t) = af(t) + f ′(t) = aFm0 (t) + (Fm0 )′(t) +
σ2

2a
(1− e−2at). (5.57)
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It may be advisable to use the formulation (5.48) rather than (5.47), since in practice

the forward curve is obtained from market data for a finite set of maturities, so that

the differentiation required in (5.57) is not a completely straightforward operation.

The Vasicek model is recovered from the Hull-White model by taking θ(t) = ab.

From (5.50) and (5.56) one quickly obtains the forward rate formula according to

the Vasicek model:

F0(T ) = r0e
−aT + b(1− e−aT )− σ2

r

2a2

(
1− e−aT

)2
(5.58)

as already stated in (5.16).

The parameter a that appears in the Hull-White model is subject to the effects

of risk aversion, just as θ(t) is. This parameter is therefore also usually calibrated

on the basis of market prices. When bond prices are already matched by a suitable

choice of θ(t), other term structure products need to be used to calibrate a. There

are plenty of such products available; for instance swaptions can be used. The

parameter σr is often calibrated in this way as well, even though it is a volatility

parameter so that it is possible to relate it directly to the variability of interest

rates. Given that many swaption prices are available, one cannot expect to match

these all by tuning only two parameters. One might consider replacing a and σ by

functions a(t) and γ(t) that depend deterministically on time, but the robustness

of such a procedure may be questioned. Alternatively one can choose a and σ in

such a way that the prices of a number of selected products are matched as closely

as possible according to some reasonable criterion (for instance sum of squares of

absolute errors, sum of absolute values of absolute errors, sum of squares of relative

errors, and so on).

As an extension of their model (5.47), Hull and White have also proposed the

following model in which a stochastic element is introduced into the drift of the

short rate:

drt = (θ(t) + ut − art) dt+ σ1 dW1,t (5.59a)

dut = −but dt+ σ2 dW2,t (5.59b)

where W1,t and W2,t are Brownian motions (possibly correlated) under the risk-

neutral measure. This is known as the two-factor Hull-White model to distinguish

it from the model (5.47) which is then referred to as the one-factor Hull-White model.

The model is affine, with two state variables (not counting the log money market

account mt) and two driving Brownian motions. It can be analyzed in a similar

way as the one-factor model; in particular, the function θ(t) can be chosen to match

observed bond prices. The two-factor model has some additional parameters with

respect to the one-factor model, namely b, σ2, and the correlation coefficient ρ of
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the two Brownian motions. These parameters can be used to obtain closer matches

with for instance swaption prices than would be possible in the one-factor model.

5.6.4 The Heath-Jarrow-Morton model

A role for calendar time in economic models could be envisaged for instance in the

agricultural sector, where there is an annual cycle in the availability of crops. Within

an interest rate model, appearance of calendar time as one of the determinants of

future developments seems less natural. In other words, models are expected to be

time-homogeneous. This property is however not satisfied by models such as (5.47)

and (5.59), due to the appearance of a time-dependent parameter which is in fact

essential to achieve the goal of obtaining a match with currently observed bond

prices. In defense of these models, it may be argued that if one wants to work with

models that have a low state space dimension, then something needs to be adjusted

to obtain a close match with the term structure of interest rates as observed in

the real world, since one cannot expect that a many-faceted process such as the

evolution of the term structure could be adequately described in terms of a model

with only one or two state variables.

A modeling framework that is capable of producing time-homogeneous models

that still fully match the currently observed term structure was proposed by David

Heath, Robert Jarrow and Andrew Morton in 1987.4 The approach relies on the

introduction of an infinity of state variables, namely the forward rates for all ma-

turities. In such a model, the current term structure can be matched exactly by

including the current forward curve in the initial condition of the infinite-dimensional

state vector.

The Heath-Jarrow-Morton (HJM) model does not fit into the framework of the

generic state space model (3.1) that is used in this book, since in (3.1) it is assumed

that the number of state variables is finite. Also, the standard formulation of the

HJM model parametrizes forward rates in terms of time of maturity, rather than

in terms of time to maturity, which means that these rates can be used as state

variables only for a finite amount of time, namely up to maturity. A form of the

HJM model that is similar to (3.1) could be given as follows:

dFt(T ) = αT (t,Xt) dt+ σT (t,Xt) dWt, t ≤ T, F0(T ) = Fm0 (T ) (5.60)

where Xt is a state variable that in general includes all of the forward rates as well as

other variables that one might want to incorporate (for instance, macro-economic

variables). If such additional variables are indeed included, then their dynamics

4“Bond pricing and the term structure of interest rates: A new methodology”, working paper,
Cornell University. A revised version was published in Econometrica in 1992 under the title “Bond
pricing and the term structure of interest rates: A new methodology for contingent claims valuation”.
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should be specified as well. Simulation of forward rates will be simplified if the

dependence of the model function αT (t, x) and σT (t, x) on the state variable x is

limited. The simplest case occurs when these functions do not depend on x at all. In

that case, the model (5.60) implies that the forward rates follow correlated Gaussian

processes; therefore this version is called the Gaussian HJM model. Due to the

parametrization in terms of time of maturity, the requirement for time homogeneity

is not that the model functions should not depend on t, but rather that they should

depend on calendar time t only through the difference T − t. The Brownian motion

Wt in the model (5.60) can be a vector, usually taken to be of finite length. The

specification of the model is under the risk-neutral measure, so that Wt is a Brownian

motion with respect to that measure.

Prices of bonds in terms of forward rates are given by (5.9). Generalizing that

formula to a general time t, we can write

Pt(T ) = exp
(
−
∫ T

t
Ft(s) ds

)
. (5.61)

This is a specification of prices of traded assets in terms of state variables with

dynamics given by (5.60). To ensure absence of arbitrage, the criterion (3.80) can

be applied. To make the notation shorter as well as more in line with the original

publication, write αt(T ) for the process αT (t,Xt), and define σt(T ) likewise. Recall

(see Section 5.2.3) that Ft(t) = rt, the short rate at time t. Freely using the Leibniz

rule5 for differentiation of integrals, and interchanging integrals as well, one can

write

d(logPt(T )) = −d
(∫ T

t
Ft(s) ds

)
= Ft(t) dt−

∫ T

t
dFt(s) ds

=
(
rt −

∫ T

t
αt(s) ds

)
dt−

(∫ T

t
σt(s) ds

)
dWt.

It then follows from the Itô rule that the drift term of the asset with price πT = Pt(T )

(T ≥ t) is given by

µT =
[
rt −

∫ T

t
αt(s) ds+ 1

2

(∫ T

t
σt(s) ds

)(∫ T

t
σt(s) ds

)> ]
πT .

The condition for absence of arbitrage is therefore∫ T

t
αt(s) ds = 1

2

(∫ T

t
σt(s) ds

)(∫ T

t
σt(s) ds

)>
.

The condition certainly holds for T = t. Therefore, the condition above is satisfied

5Gottfried Leibniz (1646–1716), German philosopher, diplomat, mathematician, lawyer, and
historian.
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when the derivatives with respect to T of the left hand side and the right hand side

are equal, i.e.

αt(T ) = σt(T )

∫ T

t
σt(s) ds, t ≤ T.

In terms of the notation employed in (5.60), this means that, to ensure absence of

arbitrage, the model functions in (5.60) must satisfy, for all t ≤ T and all x,

αT (t, x) = σT (t, x)

∫ T

t
σs(t, x) ds. (5.62)

A similar result is derived in Section 5.7.2 below in a context in which only rates

for a finite number of maturities are involved.

The HJM model is not a model in the same sense as, for instance, the Vasicek

model; rather, it is a modeling framework, or, one might say, a recipe for arriving

at arbitrage-free term structure models. Its generality is both a strength and a

weakness; many specific cases can be covered, but the modeling framework as such

does not provide much in terms of guidelines beyond the no-arbitrage condition

(5.62). One can also derive models in other ways and use the condition (3.80) for

absence of arbitrage, or one of the other equivalent conditions discussed in Chapter

3 as may be convenient in a specific case.

5.7 Partial models

The term structure models discussed so far all aim at describing the evolution of

interest rates for all maturities. On the basis of such models, one can price any

term structure derivative. It is quite ambitious to try to construct a model that is

capable of producing reliable prices and hedge strategies across such a broad range

of products. Most of the contracts that are actually traded in the market belong to

certain standard types, and one wonder whether it would not be possible to price

such contracts on the basis of simplified models. Indeed it is possible to do that;

some examples are discussed in this section.

5.7.1 The Black (1976) model

A popular term structure product is the swaption. Briefly stated, a swaption is an

option on a swap. More in detail, a swaption contract gives the holder the right to

enter, at a specified time in the future, a swap contract at a specified swap rate. As

discussed in Section 5.2.4, the swap rate in a swap contract is usually set in such

a way that the value of the floating leg of the contract, at the time the contract is

agreed upon, is equal to the value of the fixed leg at the same time. In this way,

at the time that the swap contract is entered, its value to both parties is zero. A
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swaption has the nature of an option which may or may not be taken at the holder’s

discretion, and therefore its value must be positive. The swap rate that is contracted

in a swaption is a free parameter that is similar to the strike in a call option contract.

The value of the swaption in general depends strongly on the contracted swap rate.

As discussed in Section 5.2.4, a swap contract requires specification of the tenor

dates T0, T1, . . . , Tn, the notional principal V , and the swap rate. It also needs to

be specified which party is the “payer” (i.e. pays the fixed rate) and which party

is the “receiver” (i.e. pays the floating rate). According to the formulas derived in

Section 5.2.4, the value of a payer swap with swap rate rc at time T0 is given by

(1− PT0(Tn))V −
n∑
i=1

PT0(Ti)r
cV.

Therefore, if Ct denotes the value at time t ≤ T0 of a payer swaption maturing at

T0, with swap rate rc and notional principal V , then at the time of maturity we

have

CT0 = max
(
(1− PT0(Tn))V −

n∑
i=1

PT0(Ti) r
cV, 0

)
= max(rsw

T0
− rc, 0)

n∑
i=1

PT0(Ti)V. (5.63)

An expression for the price at time t < T0 is given by the numéraire-dependent

pricing formula
Ct
Nt

= EQN
t

[CT0

NT0

]
where Nt refers to the value of a numéraire that may be chosen arbitrarily, and QN

is the corresponding martingale measure. It is possible to take

Nt =
n∑
i=1

Pt(Ti) (5.64)

because the right hand side is the price of a traded asset, namely a portfolio of

bonds which all have face value 1 and which mature at times T1, . . . , Tn. Since the

price of each bond is positive, the price of the portfolio is positive as well. This

numéraire is called the annuity factor numéraire, because the right hand side of

(5.64) represents the present value of an annuity that pays one unit of currency

at each of the time points T1, . . . , Tn. The equivalent martingale measure that

corresponds to the annuity factor numéraire is called the swap measure. The use of

the annuity factor numéraire is convenient here, because the NDPF becomes

Ct
Nt

= EQN
[

max
( 1− PT0(Tn)∑n

i=1 PT0(Ti)
− rc, 0

)]
V = EQN

t [max(rfs
T0
− rc, 0)]V (5.65)
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where rfs
t (the “forward swap rate” for a swap contract to be entered into at time

T0) is defined for t ≤ T0 by

rfs
t =

Pt(T0)− Pt(Tn)∑n
i=1 Pt(Ti)

(5.66)

(compare (5.1)). The expression (5.65) shows that to obtain the swaption price it is

not necessary to have a full term structure model. Actually it is enough to have the

distribution of rfs
T0

under the martingale measure that corresponds to the numéraire

defined in (5.64). As is shown by (5.66), the forward swap rate rfs
t is equal to the

price of a traded asset divided by the numéraire defined in (5.64). Therefore, under

the corresponding martingale measure QN , the process {rfs
t } must be a martingale.

Under the assumption that interest rates are positive, so that Pt(Tn) < Pt(T0), the

forward swap rate is positive as well. The lognormal model may then come to mind:

drfs
t = σrfs

t dWt (5.67)

where Wt is a Brownian motion under QN , and σ is a constant. Under this model,

the evaluation of the expression in (5.65) is a special case of the calculations that

lead to the Black-Scholes formula for option prices. We obtain

EQN
t [max(rfs

T0
− rc, 0)] = rfs

t Φ(d1)− rcΦ(d2) (5.68a)

where

d1 =
log(rfs

t /r
c) + 1

2σ
2(T0 − t)

σ
√
T0 − t

, d2 =
log(rfs

t /r
c)− 1

2σ
2(T0 − t)

σ
√
T0 − t

. (5.68b)

The formula for the swaption price that is obtained from (5.68) and (5.65) is usually

called the Black (1976) formula, because Black has published a formula similar to

(5.68) in a 1976 paper on the pricing of options on futures contracts.

Given the contract specifics (time of maturity T0, tenor dates T1, . . . , Tn, con-

tracted swap rate rc) and the current term structure, the expression (5.68) gives a

one-to-one relation between the parameter σ (volatility of the forward swap rate)

and the price of the swaption. It has become customary in the market to quote the

swaption price in terms of the parameter σ, which is referred to as the Black (1976)

implied volatility. Usually one works with a standardized frequency of payments so

that the tenor dates are specified just by Tn. The implied volatilities are quoted in

the market on a two-dimensional grid, made up from a range of values for T0 and a

range of values for Tn, with the contract swap rate set to the current par swap rate.
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5.7.2 LIBOR market models

LIBOR market models6 focus on products that generate payments at a limited set

of dates (typically tenor dates). They are called “market models” because they use

state variables that are directly observable in the market. These models therefore

allow the use of relatively large numbers of state variables (10 or more), which

generates flexibility in a different way than by the device, used for instance in the

Hull-White model, of allowing model parameters to depend on calendar time.

An example of a typical observable variable is the rate at which London banks can

agree to borrow funds on January 1 of next year and to return these, with interest,

on the following July 1. Such forward rates, for particular tenor dates, are available

on an ongoing basis. Let Lt(S, T ) denote the simply compounded forward rate that

is quoted at time t for loans to be made at a tenor date S and to be returned at date

T . By an argument similar to the one used above for continuous compounding, the

relation of the forward rate L(S, T ) to the prices of bonds maturing at times T and

S respectively is given by

L(S, T ) =
P (S)− P (T )

(T − S)P (T )
. (5.69)

The actual value of the factor T − S is determined by a “day count convention”.

To formulate a LIBOR market model, one starts by selecting a number of suc-

cessive tenor dates for which LIBOR rates are available, say T1, . . . , Tn+1. Let ∆Ti

(i = 1, . . . , n) denote the difference between Ti+1 and Ti according to a given day

count convention. The state variables in LIBOR market models are the LIBOR

forward rates corresponding to the periods from Ti to Ti+1. Let us denote these

rates by Li (i = 1, . . . , n); then we have an n-dimensional state variable Lt. The

LIBOR rates themselves are not prices of tradable assets, but they can be related

to the prices of bonds by the formula (5.69). Writing Pi,t for the price at time t of

the bond maturing at the tenor date Ti, we have (suppressing the subscript t, but

showing the index i that relates to the tenor date):

Li =
Pi − Pi+1

∆Ti Pi+1
(5.70)

or in other words

Pi = (1 + ∆Ti Li)Pi+1. (5.71)

6The term “LIBOR” means London InterBank Offered Rate, i.e. the interest rate paid by London
commercial banks on deposits by other banks. This rate is a frequently used benchmark for floating
rates.
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It follows that we can write successively

Pn
Pn+1

= 1 + ∆Tn Ln

Pn−1

Pn+1
=
Pn−1

Pn

Pn
Pn+1

= (1 + ∆Tn−1 Ln−1)(1 + ∆Tn Ln)

and in general
Pi
Pn+1

= Πn
j=i(1 + ∆Tj Lj). (5.72)

So we can express at least fractions of asset prices in terms of the state variables.

Here we took the price of the bond maturing at time Tn+1 as a common denomi-

nator; other choices are possible as well. The equivalent martingale measure that

corresponds to taking Pn+1 as the numéraire is known as the terminal measure. This

choice of numéraire is convenient for contracts that mature at the tenor date Tn+1,

since obviously Pn+1,Tn+1 = 1 so that the pricing formula for the value at time t of

a contract C that pays F (LTn+1) at time Tn+1 becomes

πC(t, `) = Pn+1,tE
Q
[F (LTn+1)

Pn+1,Tn+1

∣∣∣Lt = `
]

= Pn+1,tE
Q[F (LTn+1) | Lt = `] (5.73)

where Pn+1,t is at time t a known quantity. Also contracts maturing at tenor dates

Ti other than Tn+1 can be priced in terms of the LIBOR rates L1, . . . , Ln since

1

Pn+1,Ti

=
Pi,Ti
Pn+1,Ti

= Πn
j=i(1 + ∆Tj Lj,Ti).

So, at least for contracts maturing at tenor dates, it is sufficient to use the LIBOR

rates as state variables, and to model only relative prices.

Let us now consider models for the joint evolution of the LIBOR rates that take

the standard state-space form

dL = µLdt+ σLdW. (5.74)

The variable W that appears here represents a k-dimensional Brownian motion

under the terminal measure. The choice of k (the number of factors) is a modeling

decision; in principle k can have any value between 1 and n, but in practice often

fairly low values of k are chosen (one to three). We can price contracts maturing

at tenor dates as soon as we specify the functions µL and σL, which in general may

depend on calendar time and on the vector of LIBOR rates itself; but of course

these functions have to be chosen in such a way as to preclude arbitrage. Since

we have a model here that determines relative asset prices rather than absolute
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prices, we may apply Thm. 3.2.2 rather than Thm. 3.2.3; moreover, since we already

assume that W is a Brownian motion under the terminal measure that corresponds

to the numéraire Pn+1, the condition of the theorem simply becomes that the relative

asset prices should be martingales. The question is what conditions this requirement

imposes on the functions µL and σL.

The relative asset prices are given by (5.72); in particular they do not depend

directly on time. So the situation we have is of the form

dX = µXdt+ σXdW

Y/N = π(X)

where we write simply π(X) (with component functions πi(X)) instead of πY/N (X).

Because the state variables in the LIBOR market models are defined as quantities

that are in close relationship with traded assets (cf. (5.70)), the function π(X) is

already given in the model, rather than that it needs to be computed on the basis of

the absence-of-arbitrage requirements such as for instance in the case of the Vasicek

model. Instead, the requirements of absence of arbitrage are reflected in a certain

relation that must hold between the drift and the volatility parameters µX and σX

in a LIBOR model.

By the fundamental theorem of asset pricing, absence of arbitrage holds if the

vector process Y/N is a QN -martingale; this means that all of its components Yi/N

are martingales. The condition for Yi/N to be a martingale is

∂πi
∂x

µX + 1
2 tr

∂2πi
∂x2

σXσ
>
X = 0. (5.75)

In the situation of the LIBOR market model, the length of the vector Y is the

same as the length of the vector X. Moreover, it follows from (5.72) that the n× n
matrix ∂π/∂x with rows ∂πi/∂x is upper triangular, with nonzero entries on the

main diagonal. Therefore, the equations (5.75) for i = 1, . . . , n can be summarized

in the statement that the vector process Y/N is a martingale if and only if the

functions µX and σX are related by

µX = −
(∂π
∂x

)−1[
1
2 tr

∂2π1

∂x2
σXσ

>
X · · · 1

2 tr
∂2πn
∂x2

σXσ
>
X

]>
. (5.76)

This shows in particular that the volatitility σX can be freely chosen, and that the

drift µX is completely determined by the martingale requirement once σX has been

selected.

The equation (5.76) can be used to determine the relation between µL and σL in

the LIBOR market model, but the calculations are a bit complicated. One may also

reason as follows. In general, if Y and Z are processes that are expressed in terms
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of a state process by functions πY and πZ , and if both Y and Z are martingales,

then

µY/Z = −σY/Z
σ>Z
πZ

(5.77)

(this is a special case of formula (3.33)). Now note from (5.70) that

Li =
1

∆Ti

( Pi
Pi+1

− 1
)

=
1

∆Ti

( Pi/Pn+1

Pi+1/Pn+1
− 1
)

(5.78)

and that both Pi/Pn+1 and Pi+1/Pn+1 are martingales under the terminal mea-

sure. Let us write πi for the (relative) pricing function of Pi/Pn+1 and σi for the

corresponding volatility function. We have

σi =
∂πi
∂L

σL =
n∑
j=1

∂πi
∂Lj

σLj =
n∑
j=i

∂πi
∂Lj

σLj (5.79)

where the last equality holds because Pi/Pn+1 does not depend on Lj for j < i.

From the specific form of πi as given in (5.72), it follows that, for j ≥ i,

∂πi
∂Lj

=
∆Tj

1 + ∆Tj Lj
πi. (5.80)

Combining (5.77), (5.79), and (5.80), we find

µLi = −σLi
n∑

j=i+1

∆Tj
1 + ∆Tj Lj

σ>Lj . (5.81)

This determines µL once σL has been given. It follows from (5.76) that there are

no other conditions to be fulfilled, so the condition (5.81) is both necessary and

sufficient for the LIBOR market model to be arbitrage-free.

The LIBOR market model still leaves a great deal of freedom, since the number

of factors k and the n × k matrix σX = σX(t, L) can in principle be arbitrarily

specified. Often a special form is chosen of the type

σLi(t, L) = σi(t)LiRi (5.82)

where σi(t) is a scalar function of calendar time and Ri is a constant row vector.

The time function σi(t) is often chosen to be piecewise constant with jumps at the

tenor dates. The model is then finitely parametrized, and the parameters can be

determined by a combination of estimation on the basis of time series data and

calibration by matching observed prices of derivatives.
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5.8 Exercises

1. Show that the discount curve P (T ) can be expressed in terms of the swap curve

S(T ) by means of the differential equation

P ′(T ) = −
[
P (T )S(T ) + (1− P (T ))

S′(T )

S(T )

]
(5.83)

with initial condition P (0) = 1.

2. Prove that, for T2 > T1, one can write

F0(T1, T2) =
1

T2 − T1
logEQT2

[
exp
(
(T2 − T1)RT1(T2)

)]
(5.84)

where QT2 denotes the T2-forward measure.

3. At time 0, mr. Balding and ms. Young decide to form a joint investment fund.

The purpose of the fund is to provide them with money (in the form of a lump

sum) at retirement. Mr. Balding and ms. Young will retire at time T1 and time T2,

respectively, with T1 < T2. The amounts that are contributed by them at time 0 are

denoted by A1
0 and A2

0. The value of the joint fund at time t is denoted by At. Up

to time T1, the fund’s administrator communicates to mr. Balding and ms. Young a

number called the “accounting value of the benefit” bit. This number is continually

adjusted in response to investment returns and changes in interest rates, in such a

way that at all times t the following relation holds:

Pt(T1)b1t + Pt(T2)b2t = At. (5.85)

At time 0, the accounting values are defined by bi0 = Ai0/P0(Ti) so that (5.85) is

satisfied at t = 0. At later times, the accounting values are defined by bit = αtb
i
0

where αt is a common adjustment factor that is chosen such that (5.85) holds. At

time T1, the amount that mr. Balding receives is b1T1
.

a. Show that, if PT1(T2) as seen from time 0 is a deterministic quantity (i.e. the

discount factor for maturity T2 at time T1 can be exactly predicted at time 0), then

the time-0 value of the amount received by mr. Balding at time T1 is equal to his

contribution, namely A1
0.

b. Now assume that PT1(T2) is a nondegenerate random variable, and that PT1(T2)

and AT1/A0 are independent under the T1-forward measure. Prove that in this case

the time-0 value of the amount received by mr. Balding is larger than A1
0. In other

words, the decision by mr. Balding and ms. Young to form a joint fund under the

stated conditions entails a net transfer of value from ms. Young to mr. Balding.
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[Hint : use the property EQT1PT1(T2) = P0(T2)/P0(T1) and Jensen’s inequality.]7

4. a. Show that, if the short rate is constant in time, then the yield curve is

constant across maturities (and hence also constant in time).

b. Conversely, show that if in an arbitrage-free model at all times the yields are

constant across maturities, then the yields for all maturities are constant in time.

[Hint : a model in which at all times the yield curve is constant across maturities

produces bond prices that depend on calendar time t and maturity date T through

Pt(T ) = exp
(
−rt(T − t)

)
where rt is a scalar process. Assume that rt satisfies an equation of the form drt =

µr dt + σr dWt under the risk-neutral measure, and apply the criterion (3.80) for

absence of arbitrage.]

5. Suppose that a regulatory authority asks an institution to report on the evo-

lution of its assets within a single scenario for interest rates. Current time is 0,

the projection date is T1 (for instance one year from now). The authority might

for example prescribe a scenario in which RT1(T2) = R0(T2 − T1) for all T2 ≥ T1;

this would mean that the yield curve stays the same. Show that, if it assumed that

this scenario indeed occurs with probability 1, then an arbitrage opportunity exists

unless the prescribed scenario is such that

RT1(T2) = F0(T1, T2). (5.86)

Also show that no arbitrage is possible when, for t ≥ 0, the projected yield curve is

defined by Rt(T ) = F0(t, T ) where T ≥ t.

6. Suppose that the short rate follows a deterministic function of time, say rt = r(t)

where r(·) is a given function. On the basis of (5.23), compute the corresponding

yield curve and the corresponding forward curve.

7. Fig. 4.4 suggests that the Vasicek model is capable of producing term struc-

tures that are approximately flat. Is the model (with nonzero volatility) capable of

generating a yield curve that is exactly flat (same yield for all maturities)?

8. a. The stochastic differential equation (4.11) that is satisfied by the short rate

in the Vasicek model generates a stationary distribution, which does not depend on

the initial condition. Since the SDE in (4.11) is linear, the stationary distribution is

normal. Find the mean and the standard deviation of this distribution when a = 0.5,

b = 0.06 (parameter value in the specification under the risk-neutral measure), and

7Johan Jensen (1859-1925), Danish engineer. Jensen did not have a formal degree in mathemat-
ics, but still wrote mathematical papers in his spare time while working as a telephone engineer (a
booming technology in his days) in Copenhagen.
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σ = 0.02. [Hint : see Section 2.6.] To what extent does the value of the parameter

b play a role?

b. Another parameter that can be associated to the model (4.11) is the so called

half-life, which is the time it would take for a deviation of the equilibrium value to

be reduced to one-half of its original size, if there would be no disturbances (i.e. if

σ would be zero). Determine the half-life of the model with parameters as given in

part a. of this exercise. Is the value of the half-life affected by the parameter b?

c. The Vasicek model for the short rate is an affine model and so it is possible that

in this model the short rate becomes negative. If the parameter values are as in

part a., how often does this happen on average in the long run?

9. Suppose that an affine term structure model of the form (5.36) is given with

A =

0 0 0

0 −a a

0 0 a

 , h =

1

1

0

 .
Compute the functions that have variable weights in the corresponding yield curve,

and compare to the Nelson-Siegel model.

10. A portfolio strategy can be defined at follows. Starting with a given capital at

time 0, use the money to buy bonds with maturity T . At time ∆T (where ∆T < T ),

sell these bonds and buy new ones with maturity T + ∆T . At time 2∆T , sell those

and buy new ones with maturity T + 2∆T ; and so on. This is called “rolling over

the bonds”. Theoretically, one can let ∆T tend to zero and create in this way what

might be called a constant-maturity bond.

a. Let Vt denote the value at time t of a constant-maturity bond. Suppose that a

term structure model is given in the form

dXt = µX(t,Xt) dt+ σX(t,Xt) dWt

Pt(T ) = πT (t,Xt) (T ≥ t)

rt = h(t,Xt)

whereWt is a Brownian motion under the risk-neutral measure QM . Write a stochas-

tic differential equation for Vt under QM . [Hint : the relation (3.11) implies that

the volatility of a self-financing portfolio at time t is determined by the portfolio

composition at time t and the volatility at time t of the assets from which the port-

folio is constructed. Feel free to use the same relation even in the present case of a

portfolio strategy that uses infinitely many assets.]

b. In particular, find the SDE that describes the evolution of Vt under QM in the
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case of the Vasicek model. Under the assumption that the price of risk is constant,

also find the SDE that describes the evolution of Vt under P.

11. Consider a swap with swap rate 5.5%, annual payments, a principal of 100, and

5 years to maturity. Assume that the term structure is as prescribed by the Vasicek

model with parameters as in Exc. 8.a, and that the short rate is 5%. Compute the

current value of the swap to the party that pays the floating rate.

12. The derivation of the formula for the yield curve under the Vasicek model is

a somewhat tedious and error-prone affair, and this becomes only worse in higher-

dimensional affine models. To get confirmation that a proposed formula is indeed

correct, bond prices can also be obtained by simulation, on the basis of formula

(4.22) in the course notes. It has to be taken into account that prices obtained from

simulation are subject to Monte Carlo error as well as to discretization error. Both

issues are addressed in the exercise below.

a. Simulate 104 joint trajectories of the short rate and the money market account

according to the Vasicek model, with parameters as in Exc. 3.a and initial short rate

r0 = 0.02. Take Thor = 30 as the simulation horizon, and use time step ∆t = 0.1 for

the Euler discretization. Compute bond prices for maturities T = ∆t, T = 2∆t, . . . ,

T = Thor on the basis of the formula P (T ) = EQM [1/MT ]. Plot the corresponding

yield curve together with the yield curve as given by (4.34). [The amount of 104

scenarios should be enough to give you results that are accurate up to a few basis

points.8]

b. For each maturity T ∈ {∆t, 2∆t, . . . , Thor}, compute the standard deviation of the

results obtained by simulation, and use this to compute an approximate confidence

interval for the yields obtained from simulation. (Different confidence intervals are

associated to different maturities.) Plot the difference of the yield curve obtained

from simulation and the yield curve according to (4.34), and in this plot also show

the bounds that are obtained from the confidence intervals for all maturities.

To improve the behavior of the simulation for small maturities, an adaptation to

the Euler scheme can be made as follows. First of all, simulation of the money

market account may be replaced by simulation of the log money market account

Lt := logMt, which satisfies the stochastic differential equation

dLt = rt dt.

The usual Euler discretization for this SDE is

Lt+∆t = Lt + rt∆t

8A basis point is 1/100th of a percentage point.

200

OPEN PRESS TiU



The term structure of interest rates Exercises

but, if we first update r and then update L, we can replace this by

Lt+∆t = Lt + 1
2(rt + rt+∆t)∆t.

c. Redo part b. using the new variable Lt and the new discretization scheme.

13. A swaption is a contract that gives the holder the right to enter, at a given

time T in the future, a swap contract with specified parameters. We consider here

the valuation of a swaption under the following conditions:

• the swaption has an option maturity of T = 1 year, and the current short

interest rate is r0 = 0.05;

• the swap contract that the swaption refers to is a five-year swap with yearly

payments in which a fixed rate of 6% is received, and the value of the principal

is one million euro;

• valuation is done under the Vasicek model with the following parameters:

a = 0.2, b = 0.06 (parameter value in the specification under the risk-neutral

measure), and σ = 0.02.

Several approaches can be used to determine the price of the swaption. Parts a. and

b. of this exercise call for the construction of auxiliary functions that are of use in

several different methods.

a. Write code that will compute bond prices in a Vasicek model with given param-

eters, for a range of maturities T1, . . . , Tm and for a range of values of the short rate

r1, . . . , rm. The code should allow for vector inputs [T1 · · · Tn] and [r1 · · · rm], and

should produce as output a matrix which has as its (i, j)-th element the bond price

for maturity Tj when the short rate is ri.

b. Write code that computes swap values in a Vasicek model with given parameters,

for a range of values of the short rate r1, . . . , rm. Assume that current time is the

initiation date T0, and that the tenor dates are equally spaced. Take as input

parameters the model parameters of the Vasicek model, the notional principal, the

number n of future tenor dates, the distance between successive tenor dates, the

fixed rate in the swap contract, and a vector [r1 · · · rm] of possible values of the

short rate at the time at which the swap contract is initiated. The output is an

m-vector of corresponding swap values.

The swaption payoff at time T = 1 is given by

CT = max(ST , 0) (5.87)

where ST is the value at time T of the swap that may be initiated at that time
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if the swaption holder chooses to do so. In the Vasicek model, the only uncertain

factor that influences the swap value is the short rate rT , so that the swaption can

be viewed as an option on the short rate. The random variable ST can be written

as ST = f(rT ) where f(·) is the function that is implemented in part b. above. The

swaption can be priced by the formula

C0

M0
= EQM

[ CT
MT

]
= EQM

[max
(
f(rT ), 0

)
MT

]
. (5.88)

This can be evaluated numerically by the Monte Carlo method, on the basis of an

Euler discretization of the joint stochastic differential equations (5.37) and (5.19).

c. Determine the value of the swaption by the Monte Carlo method as suggested

above. Use 104 trajectories and take step size 0.01 for the Euler discretization.

Determine an estimated value as well as a confidence interval.

An alternative formula for the swaption value can be obtained by using the T -bond

as a numéraire, rather than the money market account:

C0 = P0(T )EQT
[ CT
PT (T )

]
= P0(T )EQT [max(f(rT ), 0)]. (5.89)

The advantage of this formula is that it requires only the distribution of rT and not

of any other variables. To achieve this, we do need to switch from the specification

under the risk-neutral measure to the specification under the forward measure.

d. Use the change-of-numéraire formula (3.71) to write a stochastic differential

equation for rt under the T -forward measure. You may find it convenient to use the

expression (3.75).

e. Use an Euler discretization of the SDE that you found under d. to compute a

Monte Carlo approximation of the swaption price on the basis of the formula (5.89).

Use 104 trajectories and take step size 0.01 for the Euler discretization. Determine

an estimated value as well as a confidence interval.

With a bit more effort, the Euler discretization can be discarded.

f. Use the formulas in Section 2.6.3 to give an explicit description of the distribution

of rT under the T -forward measure. [Hint : the distribution is normal, so it is

sufficient to give the mean and the variance.]

g. Determine the price of the swaption again by the Monte Carlo method on the

basis of the expression (5.89), but this time using draws from the distribution of

rT directly. Use 104 samples; determine an estimated value as well as a confidence

interval.

Since the swaption value is given in (5.89) in terms of the expectation of a function
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of a variable with known distribution, it is possible to use a numerical quadrature

method (cf. Exc. 4.5.7) instead of a Monte Carlo method. In the present case this

comes down to replacing an expectation of the form E[g(Z)], where Z is a standard

normal variable and g is a given function, by an expectation of the form E[g(Ẑ)]

where Ẑ is a discrete random variable that has approximately the same distribution

as Z.

h. Evaluate the expectation in (5.89) by numerical quadrature. To approximate the

normal random variable, construct an evenly spaced grid of 100 points ranging from

−4 to 4, and define a discrete random variable that takes values in the grid points

with probabilities chosen such as to approximate the standard normal distribution.

Compute the corresponding swaption value. To assess the accuracy of the answer,

also compute the value when the grid range is extended from [−4, 4] to [−5, 5], and

when 1000 grid points are used instead of 100.

14. A bank has a traditional mortgage contract available for customers in which

interest rate payments are fixed for ten years. Payments are to be made monthly,

and the monthly amount to be paid is determined as one-twelfth of the ten-year

interest rate times the amount of the loan. The ten-year rate that is used is the one

that holds at the starting time of the mortgage. The bank managers are considering

to introduce an additional feature to this contract: after five years, customers may

choose to reset the interest rate to the five-year rate that holds at that time. In

return for this privilege, customers should accept a certain surcharge; for instance,

if the ten-year rate at the initiation of the contract is 5% and the surcharge is 1%,

the monthly payments will be one-twelfth of 6% of the amount of the loan, rather

than one-twelfth of 5%. If after five years the reset option is not used, the surcharge

will remain in force for the rest of the duration of the contract. When a reset does

take place, the surcharge is no longer paid.

The managers want to know which value of the surcharge is such that the value

of the contract with the reset option is the same as the value of the traditional

contract. Determine the surcharge that satisfies this condition. Use the following

assumptions:

• only payments during ten years are considered (the mortgage will be renego-

tiated after that time);

• in each version of the contract, the first monthly payment is made one month

after the rate has been (re)set;

• the evolution of the term structure is described by the Vasicek model with

a = 0.5, b = 0.04, σ = 0.03, and the price-of-risk parameter is equal to

λ = −0.2;
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• the current short rate is r = 0.04.

Use a Monte Carlo method in combination with the numéraire-dependent pricing

formula; take the money market account as a numéraire. Find the surcharge by trial

and error, at the level of accuracy of basis points. You may find it useful to write

separate routines that perform the following operations:

• compute, for a given value of the short rate r, the interest rate for a given

maturity according to the Vasicek model;

• compute, for a given value of r, the current value of a series of constant monthly

payments on the basis of the term structure that is connected to r through

the Vasicek model.

15. Consider the following contracts for interest payments on a loan. The borrower

is referred to below as the customer, and the lender (the institution that provides

the loan) is called the bank.

• Contract C0, with parameters A (“principal”), rp (“rate paid”), and Tf (“fi-

nal payment date”): monthly payments of (rp/12)A until time Tf . The last

payment is made at time Tf .

• Contract C1, with parameters A, rp, Tf , and T1 (“reset date”): same as above,

but at time T1 the customer has the option of replacing the rate rp, for pay-

ments after time T1, by the rate that holds at time T1 for loans that mature

at time Tf . If this option is chosen, the customer has to pay 1% commission

(i.e. the amount 0.01A) at time T1 to the bank.

• Contract C2, with parameters A, rp, Tf , T1 (“first reset date”), and T2 (“sec-

ond reset date”). The contract is the same as above, except that the interest

rate may now be reset both at time T1 and at time T2. The new rate is in both

cases given by the rate that holds at the time of reset for loans that mature

at time Tf . At each time at which the reset option is used, the customer pays

1% commission.

• Contract C3. Same as above, except that at most one reset is allowed; in other

words, if the reset option is used at time T1, then there cannot be a second

reset at time T2. One percent commission is paid if the option is used; this

payment is then made at the time of use (either T1 or T2).

Assume that a term structure model is available which describes the dynamics of

the vector of state variables Xt under an equivalent martingale measure QN which

corresponds to a chosen numéraire Nt = πN (t,Xt). The model leads to a function
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πT such that the value at time t of a default-free zero-coupon bond that pays 1 at

time T is given by

Pt(T ) = πT (t,Xt).

Let the function πC0(A, rp, Tf ; t,Xt) denote the value at a given time t < Tf of future

payments to the bank resulting from contract C0 (i.e. payments that will be made

after time t). For brevity the parameters may sometimes be omitted, so that we can

write simply πC0(t,Xt). The functions πC1 , πC2 , and πC3 are defined analogously.

a. Give an expression for the function πC0(t, x), for t < Tf , in terms of the function

πT (t, x).

b. Give an expression for the function πC1(t, x), for t < T1, in terms of the functions

πT (t, x), πN (t, x), and πC0(t, x).

c. Give expressions for the functions πC2(t, x) and πC3(t, x), for t < T1, in terms of

the functions πT (t, x), πN (t, x), πC0(t, x), and πC1(t, x).

d. Assume that the Vasicek model holds with the same parameter values as in

Exc. 14, and that the current short rate is 4%. Let rp be equal to the 15-year

rate that is given by the model. Compute the value at time 0 of all four contracts

mentioned above, assuming the following parameter values: A = 100, T1 = 5,

T2 = 10, Tf = 15.

16. In this exercise we consider a risk management problem for a firm that for its

activities needs to keep a constant amount funded. Say that, for the coming ten

years, the firm wants to have the amount 1000 available. Among the many ways of

achieving this, we may in particular consider the following alternatives.

(i) Long-term funding: the firm borrows 1000 for ten years and pays a constant

amount of interest each month, where the interest rate is set such that the

amount to be returned after ten years is exactly 1000.

(ii) Short-term funding: each month, the firm borrows 1000 for one month and

pays the one-month interest rate at the end of the month. The amount of

1000 is returned at the end of the month but is immediately borrowed again

(refinancing of the loan). The firm keeps on doing this for ten years.

All payments are discounted to current time on the basis of the current term struc-

ture; in this way one can compute the total cost of interest payments, which is

deterministic in the case of long-term financing but stochastic when short-term

funding is used. Assume that the Vasicek model holds with the following parameter

values: a = 0.8; b = 0.04 (parameter value under the real-world measure); σ = 0.01.

The current short rate is given by r0 = 0.04. Under the assumption that the price

of interest rate risk λ is equal to 0, compute
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(i) the total cost of interest payments in the case of long-term funding

(ii) the expectation and the standard deviation (under the real-world measure) of

the total cost of interest payments in the case of short-term funding.

Also produce a histogram to show the distribution of the total cost of interest

payments under short-term funding. For the numerical evaluations, you can use the

Monte Carlo method with 104 scenarios; give an approximate confidence interval for

the expected total costs of interest payments.

Repeat the computations under the assumption that λ = −0.5, and once more

under the assumption that λ = 0.5. Comment on the impact of the value of λ on

the decision whether to rely on short-term funding or long-term funding.
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Chapter 6

Finite-difference methods

As we have seen, there are several general option pricing methods, based on either

the equivalent martingale measure, the Black-Scholes partial differential equation,

or the pricing kernel. Depending on the dynamics of the given model and the nature

of the option to be priced, it is possible in a number of cases to obtain analytical

solutions of the pricing equations as discussed in Chapter 4. However, in many

cases no analytical solution is known and consequently one has to apply numerical

methods to find prices and hedging strategies. Each of the option pricing methods

suggests a computational approach. The Black-Scholes partial differential equation

is
∂π

∂t
+
∂π

∂x
µX + 1

2 tr
∂2π

∂x2
σXσ

>
X − rπ =

∂π

∂x
σXλ (6.1)

together with specific boundary conditions for each given contract. This is a partial

differential equation of a type that also occurs frequently in problems of physics

and engineering. A large body of knowledge exists concerning numerical methods

for solving such PDEs. The pricing formula based on the equivalent martingale

measure is
Ct
Nt

= EQN
t

[CT
NT

]
(6.2)

where Ct denotes the claim price at time t, and Nt is a numéraire. If we can sample

from the distribution of CT /NT under the risk-neutral measure Q associated to the

numéraire, then a simple way to obtain an approximation of the expected value is to

average over a large number of samples. This is a basic version of the Monte Carlo

method. The same method can be applied to the characterization of the price in

terms of the pricing kernel.

In this chapter we concentrate on PDE-based numerical methods; the Monte

Carlo method and its ramifications will be discussed in Chapter 7. Discretization

of partial differential equations is a subject of long-standing interest in physics and

engineering. Generally speaking there are two approaches that start from different

philosophies. In the finite-difference method, emphasis is on the approximation
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of the differential operators that occur in a given partial differential equation. The

finite-element method starts from a representation of approximate solutions in terms

of suitably chosen basis functions. The latter approach is the method of choice

in many engineering problems where complex geometries play a role, for instance

in computing the effects of disturbances on mechanical structures such as trucks

or suspension bridges. Financial applications usually are not complicated in this

respect, although they may very well be complicated in other respects (such as high

dimension, separation into stages, free boundaries). Below we concentrate on the

finite-difference method.

Two important issues that may arise in the application of finite difference meth-

ods are the following:

• instability

• the “curse of dimensionality”.

When instability arises, finite difference methods may go completely astray and

produce results that are very far from the truth. The issue can be handled however,

as will be discussed below. The quick increase of complexity with dimension is

an intrinsic property of finite-difference methods, and is a notable difference with

Monte Carlo methods. In this chapter, the discussion of finite difference method will

be limited to the one-dimensional case, that is, concerning models that have only

one state variable. Even if the techniques presented below apply in principle also

to higher-dimensional situations, the size of the matrices involved tends to become

prohibitive when these techniques are used in three or more dimensions.

6.1 Discretization of differential operators

The finite-difference method is based on the approximation of derivatives by finite

difference quotients. The approximation formulas that are needed may be derived

from the Taylor1 expansion. To illustrate this in the case of a function of one

variable, note that for a sufficiently smooth function f , one may write

f(x+ ∆x) = f(x) + f ′(x)∆x+ 1
2f
′′(x)(∆x)2 + 1

6f
(3)(x)(∆x)3 + · · · . (6.3)

Replacing ∆x by −∆x, we also have

f(x−∆x) = f(x)− f ′(x)∆x+ 1
2f
′′(x)(∆x)2 − 1

6f
(3)(x)(∆x)3 + · · · . (6.4)

1Brook Taylor (1685–1731), British mathematician.
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From (6.3), we can write

f ′(x) =
f(x+ ∆x)− f(x)

∆x
+O(∆x). (6.5)

This formula is a straightforward approximation of a differential quotient by a dif-

ference quotient. A more accurate approximation may be obtained by subtracting

(6.3) and (6.4) from each other:

f ′(x) =
f(x+ ∆x)− f(x−∆x)

2∆x
+O

(
(∆x)2

)
(6.6)

where now the error term is of order (∆x)2 rather than of order ∆x as in (6.5), since

the quadratic terms in (6.3) and (6.4) cancel when the two formulas are subtracted.

The formula (6.6) is called the symmetric difference formula. Formulas that are

asymptotically (as ∆x tends to zero) even more accurate can be obtained by using

more values of f , for instance f(x + 2∆x) and f(x − 2∆x); usually however the

formulas (6.5) or (6.6) already provide enough accuracy.

A formula for the second derivative may be obtained by adding the expressions

(6.3) and (6.4). One gets

f ′′(x) =
f(x+ ∆x)− 2f(x) + f(x−∆x)

(∆x)2
+O

(
(∆x)2

)
(6.7)

where the error term has order (∆x)2 because the cubic terms cancel when (6.3)

and (6.4) are added.

The same technique may be applied to obtain partial derivatives of functions of

several variables. For instance, if f is a function of x1 and x2, then

∂f

∂x1
(x1, x2) =

f(x1 + ∆x1, x2)− f(x1, x2)

∆x1
+O(∆x1) (6.8)

and so on.

Finite-difference formulas are typically linear in the function values that they

use. This is natural, since the operation of differentiation is linear itself (that is to

say, (af1 + bf2)′ = af ′1 + bf ′2 when a and b are constants), and the same holds for

higher-order derivatives, as well as for partial derivatives.

6.2 Space discretization for the BS equation

The Black-Scholes equation for the unknown price π(t, x) of a traded asset is (6.1)

together with contract-specific boundary conditions. In the pricing of derivative

contracts, typically the value of the contract at the time of expiration is given and

the process of numerically solving the above equation can be viewed as a procedure
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that works backward from the time of maturity to the initial time. The PDE (6.1)

may be rewritten in the form

− ∂π

∂t
=
∂π

∂x
(µX − σXλ) + 1

2 tr
∂2π

∂x2
σXσ

>
X − rπ (6.9)

to bring out this point of view more clearly. The right hand side in (6.9) contains only

derivatives with respect to the state variables, whereas the left hand side is simply

a derivative with respect to time; the minus sign is in some sense appropriate since

the equation is to be solved backward in time. The discretization process for the

above equation can be split into two stages; first, discretization of the right hand

side containing the differential operators in the direction of the variable x, followed

by discretization in time.

We now first consider the discretization in space. For any given t, the pricing

function π(t, x) is a function of the state variables x; so it is a function on (a subset

of) Rn. For computational purposes, some finite representation of the function needs

to be used. Suppose that a grid has been chosen in the state space and that the

function π(t, x) is represented by a vector z(t) of values on grid points; so the vector

z(t) has length N where N is the number of points in the chosen grid. By making

use of a finite-difference scheme, the right hand side of (6.9) can then be expressed as

the result of an operation on z(t), and since in standard finite-difference applications

this operation is linear, it can in fact be represented by a matrix.

Let us consider this process in more detail for the case in which we have a

one-dimensional state variable, and a one-dimensional Brownian motion. We focus

first of all on the second derivative that appears in (6.9). This operator may be

approximated by the symmetric formula (6.7), where it is natural to let the step

∆x be equal to the distance between two adjacent grid points. The formula (6.7)

can be applied everywhere at the grid except at the boundary points, where only

one neighbor is available. How to deal with boundary points is a general problem

in the finite-difference method, which gains in importance as the dimension of the

state space increases. Usually some information about the nature of the solution

has to be used to arrive at an appropriate treatment of boundary points in a specific

application. In many financial applications with a one-dimensional state, the state

variable represents the price of an underlying asset, and the problem is to price

an option that has a piecewise linear payoff function. In such cases, a grid will be

chosen in such a way that the boundary points are far away from the location of the

kinks in the payoff function. The presence of the kinks will then only have a small

influence on the value of the solution at the boundary points, and we may act (for

the purposes of computing the solution at the boundary points) as if the kinks are

not present and the payoff is linear in the underlying. Then the pricing function

is also linear as a function of the underlying, and as a result the second derivative
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A1 =



−1 1 0 · · · · · · · · · 0 0
−1

2 0 1
2 0 0

0 −1
2 0 1

2 0 0
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
0 0 −1

2 0 1
2 0

0 0 −1
2 0 1

2
0 0 · · · · · · · · · 0 −1 1


. (6.10)

Display 6.1: Approximation of first-order differential operator.

A2 =



0 0 0 · · · · · · · · · 0 0
1 −2 1 0 0
0 1 −2 1 0 0
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
0 0 1 −2 1 0
0 0 1 −2 1
0 0 · · · · · · · · · 0 0 0


. (6.11)

Display 6.2: Approximation of second-order differential operator for functions that are
approximately linear at the boundaries. Replace first and last row by [−1 1 0 · · · ] and
[· · · 0 −1 1] for functions that are approximately exponential at the boundaries.

is zero. Using this as an approximation, the matrix representation for the second

derivative is 1
(∆x)2A2 where A2 is the matrix shown in Display 6.2. The modifications

at the boundary may not be satisfactory for all applications; as an alternative one

can try to determine approximate solutions at the boundary by a different method,

and then use this information to correct the results of the calculations on the basis

of finite-difference matrices.

To approximate the first derivative, we may use the symmetric difference formula

(6.6) at all points except the boundary points; at the boundary points a one-sided

formula of the type (6.5) may be used. This leads to a matrix representation for

the first derivative of the form 1
∆xA1 where A1 is given as in Display 6.1, where it is

assumed that the grid points x1, x2, . . . , xN are ordered such that x1 < x2 < · · · <
xN .

For a complete representation of the right hand side of (6.9), we also need to take

care of the multiplication operators appearing in this equation. We have assumed

that the model we consider is driven by a single Brownian motion, so that not

only µX but also λ and σX are scalar functions. We assume furthermore that these
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functions depend only on x, not on t. Writing µ̄(x) := µX(x)−σX(x)λ(x) for brevity,

the operator of multiplication by µ̄(x) is represented by the diagonal matrix with

entries µ̄(x1), · · · , µ̄(xN ) on the diagonal. Call this matrix Aµ. The operation of

multiplying by σ2
X is represented in the same way by a diagonal matrix Aσ. Finally,

the complete operator on the right hand side of (6.9) is represented by the matrix

A := −rI +
1

∆x
AµA1 + 1

2

1

(∆x)2
AσA2. (6.12)

6.3 Preliminary transformation of variables

The above is a straightforward discretization applied to the Black-Scholes equation

as given in (6.9). It may be advantageous, however, to apply some transformation of

independent and/or independent variables before applying a discretization scheme.

As an example, take the PDE associated to the standard Black-Scholes model:

∂π

∂t
+ rS

∂π

∂S
+ 1

2σ
2S2 ∂

2π

∂S2
− rπ = 0. (6.13)

Define a new function π̃ by π̃(t, x) = π(t, exp(x)); then we have

∂π̃

∂x
(t, x) = exp(x)

∂π

∂S
(t, exp(x))

and
∂2π̃

∂x2
(t, x) = exp(x)

∂π

∂S
(t, exp(x)) + exp(2x)

∂2π

∂S2
(t, exp(x)).

Setting S = exp(x), i.e. x = logS, one can write in shorthand notation

S
∂π

∂S
=
∂π̃

∂x
, S

∂π

∂S
+ S2 ∂

2π

∂S2
=
∂2π̃

∂x2
.

The equation (6.13)) is then rewritten as follows:

∂π̃

∂t
+ (r − 1

2σ
2)
∂π̃

∂x
+ 1

2σ
2∂

2π̃

∂x2
− rπ̃ = 0. (6.14)

This new version does not have state-dependent coefficients, in contrast to the origi-

nal equation (6.13). Note that a constant-distance grid in the variable y corresponds

to a constant-ratio grid in the variable x; this fits in with the intuition that the rel-

ative sizes of values of the underlying are more important than the absolute sizes.

The transformation to logarithmic variables turns functions that are linear in

the original variable x to functions that are exponential in the new variable y. This

fact has some implications for the approximation of the second-order differential

operator at the boundary points. While for a function that is approximately linear

the second derivative is approximately 0, the second derivative of a function that is
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approximately exponential is approximately equal to its first derivative. So, after

logarithmic transformation, it makes sense to replace the zero first and last row in

the matrix A2 as given in Display 6.2 by the first and last row of the matrix A1 in

Display 6.1.

6.4 Time stepping

After discretization with respect to the state variables, the equation (6.9) is replaced

by the linear ordinary differential equation

− dz

dt
(t) = Az(t). (6.15)

Here it is assumed that the coefficients appearing in (6.9), such as µX , σX and so

on, do not depend on time directly, i.e. otherwise than through the state variables.

If such dependence does appear, then the expression at the right hand side of (6.15)

is replaced by A(t)z(t) where A(t) is a deterministic matrix function of time. This

complicates the implementation of the numerical method to be discussed below only

to a small extent, but for the analysis of the method it is easier to suppose (as it is

the case in many applications) that we are in the time-homogeneous case in which

the matrix A is constant.

For pricing purposes, the equation (6.15) is to be solved backwards in time; that

is to say, z(T ) is given and we want to compute z(0). We can change to the more

standard setting of solving differential equations forward in time by introducing a

new unknown function v(t) := z(τ(t)) with τ(t) := T − t. Applying the chain rule

of deterministic calculus, we can write

dv

dt
(t) =

dz

dτ
(τ(t))

dτ

dt
(t) = −Az(τ(t)) (−1) = Az(τ(t)) = Av(t).

Therefore the equation (6.15) becomes

dv

dt
(t) = Av(t) (6.16)

where now v(0) is given and we want to compute v(T ). The solution can be written,

in terms of the matrix exponential that was introduced in (2.76), as v(T ) = eAT v(0).

The size of the matrix A is given by the number of grid points in the state space, so

this matrix could be quite large. Computation of the exponential of a large matrix

is a challenge for numerical software. While many software packages have built-in

routines for computing the matrix exponential, it is nevertheless worthwile to have

a look at the time discretization methods that can be used for this purpose, in the

particular case of space-discretized versions of equations of the form (6.1). One of the

reasons is that these methods are also of use in applying the finite-difference method
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to the computation of the values of American options, as discussed in Section 6.6

below.

So, let us choose a time step ∆t. Since v(0) is given, a natural approach is to

compute v(∆t) from v(0), then v(2∆t) from v(∆t), and so on until we arrive at

v(T ). In general, suppose that we have computed v(t), and we want to compute

v(t+ ∆t). A straightforward application of the finite-difference formula (6.5) leads

to the approximation
v(t+ ∆t)− v(t)

∆t
= Av(t) (6.17)

from which we get

v(t+ ∆t) = (I + ∆tA)v(t). (6.18)

However, the expression at the left hand side of (6.17) may just as well be viewed

as an approximation of (dv/dt)(t+ ∆t). The approximation

v(t+ ∆t)− v(t)

∆t
= Av(t+ ∆t) (6.19)

leads to the formula

v(t+ ∆t) = (I −∆t A)−1v(t). (6.20)

This is called an implicit scheme, since it requires an equation to be solved, namely

(I −∆t A)v(t+ ∆t) = v(t). Solving such an equation is a numerical problem of its

own. On the positive side, the computation is facilitated by the fact that a good

initial guess for the solution is available; indeed, the solution vector obtained in the

preceding step can be used as such. The method (6.18), which does not require

solving a linear equation, is called an explicit scheme. More generally, we can use

an approximation of the form

v(t+ ∆t)− v(t)

∆t
= θAv(t+ ∆t) + (1− θ)Av(t) (6.21)

where θ is a number between 0 and 1. For θ = 0, the explicit scheme is recovered,

whereas taking θ = 1 produces the implicit scheme. The general scheme obtained

from (6.21) is

v(t+ ∆t) = (I − θ∆t A)−1(I + (1− θ)∆t A)v(t). (6.22)

To assess the error that is incurred here, the expression above may be compared to

the exact solution, which is given by

v(t+ ∆t) = e∆tAv(t). (6.23)
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The matrix exponential may be expanded in terms of powers of ∆t:

e∆tA = I +A∆t+ 1
2A

2(∆t)2 + 1
6A

3(∆t)3 + · · · . (6.24)

This may be compared to the power series expansion of the expression in (6.22):

(I − θ∆tA)−1(I + (1− θ)∆tA) =

= (I + θA∆t+ θ2A2(∆t)2 + · · · )(I + (1− θ)A∆t) =

= I +A∆t+ θA2(∆t)2 + θ2A3(∆t)3 + · · · . (6.25)

It is seen that the error is of order (∆t)2 for all θ, except when θ = 0.5; in the latter

case the error is of order (∆t)3. The method that is obtained from (6.21) by taking

θ = 0.5 is called the Crank-Nicolson scheme.2 All schemes of the form (6.21) with

θ 6= 0 require the solution of a matrix equation and so in this sense all these schemes

are implicit; therefore the method (6.19) is also sometimes referred to as the “fully

implicit” scheme.

6.5 Stability analysis

The numerical procedure that was developed above eventually comes down to a

recursion of the form v(t+ ∆t) = Mv(t) where M is a certain matrix. At each step

of the recursion there is an approximation error. Of course the scheme has been

constructed in such a way that this error is small; however we need to analyze what

happens to the error as the recursion proceeds. Denote the “exact” solution at time

k∆t by vk, and let ṽk denote the actually computed solution. We then have (ideally)

vk+1 = Mvk (6.26)

while on the other hand

ṽk+1 = Mṽk + εk (6.27)

where εk is the error incurred at step k. The sequence of errors ek := ṽk − vk then

satisfies

ek+1 = Mek + εk. (6.28)

Assuming that ṽ0 = v0 so that e0 = 0, we have e1 = ε1, e2 = Mε1 + ε2, and in

general

ek = Mk−1ε1 +Mk−2ε2 + · · ·+Mεk−1 + εk. (6.29)

2John Crank (1916–2006), British mathematician. Phyllis Nicolson (1917–1968), British math-
ematician. The Crank-Nicolson scheme was developed during the Second World War and was
published in 1947.
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It is seen that there is a multiplicative effect on errors. In case M has eigenvalues

that have absolute value larger than 1, the error after a number of iterations may

be much larger than the error in each individual step. Therefore it is important to

consider the eigenvalues of the recursion matrix.

When considering various time stepping schemes, we always relate a certain

matrix A representing a continuous-time evolution to a matrix M that is used in

a discrete-time recursion. The matrix M can be described as a function of the

matrix A; in fact, in all cases, it is a function of the form p(A)q(A)−1 where p(x)

and q(x) are polynomials. Generally speaking, given a polynomial p(x) = pkx
k +

pk−1 + · · · p1x+ p0, the matrix p(A) is defined, for any square matrix A, as p(A) =

pkA
k + pk−1 + · · ·+ p1A+ p0I. Some useful properties are the following:

(i) if p and q are both polynomials, then the matrices p(A) and q(A) commute,

i.e. p(A)q(A) = q(A)p(A);

(ii) (as a consequence of the above) if p and q are polynomials and q(A) is invert-

ible, then p(A)q(A)−1 = q(A)−1p(A);

(iii) if λ is an eigenvalue of A, then p(λ) is an eigenvalue of p(A), and conversely,

if µ is an eigenvalue of p(A), then there is an eigenvalue λ of A such that

p(λ) = µ;

(iv) if λ is an eigenvalue of A, then p(λ)/q(λ) is an eigenvalue of p(A)q(A)−1, and

conversely, if µ is an eigenvalue of p(A)q(A)−1, then there is an eigenvalue λ

of A such that p(λ)/q(λ) = µ.

The statement in (i) is proved simply by expanding both p(A)q(A) and q(A)p(A) in

terms of powers of A, and noting that these expansions are the same. To prove the

first fact stated in (iii), let x be an eigenvector of A associated to the eigenvalue λ,

and note that p(A)x = pkA
kx + · · · + p0x = pkλ

kx + · · · p0x = p(λ)x so that x is

also an eigenvector of p(A), with eigenvalue p(λ). The converse statement follows

from this in case the matrix A has a complete set of eigenvectors, but holds as well

in the general case.3

From the theory of differential equations, it needs to be remembered that the

solutions of a vector differential equation of the form

dx

dt
(t) = Ax(t), x(0) = x0

(i.e. a system of linear differential equations) converge to 0 as t→∞ if and only if

all of the eigenvalues of the matrix A are in the open left half of the complex plane

3For instance, one may use the argument, although it may be considered inelegant, that every
square matrix can be approximated arbitrarily closely by a matrix that has a complete set of
eigenvectors, and combine this with the fact that the eigenvalues of a matrix are continuous functions
of its entries.
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(i.e. their real parts are negative). It is then said that the matrix A is “stable”.

For discrete-time recursions, the analogous condition is that all eigenvalues of the

recursion matrix should have absolute value less than 1, i.e. they should be inside the

unit circle in the complex plane. In the application discussed here, the matrix A is

derived as an approximation on a finite grid of the differential operator that appears

on the right hand side of (6.9)), or a log-transformed version of it. As long as the

interest rate r is nonnegative, this operator should not generate any exponential

growth.4 Consequently, we can focus on the question when a recursion matrix of

the form M = p(A)q(A)−1 is stable, given that the matrix A is stable. According

to the facts from linear algebra discussed above, this happens exactly when the real

part of p(λ)/q(λ) is negative whenever the absolute vale of λ is less than 1. More

precise conditions can be given if more is known about the eigenvalues of A.

Consider in particular the explicit scheme (6.18), which constructs the recursion

matrix M from the continuous-time matrix A by the formula M = I + ∆tA. The

range of points in the complex plane that are taken into the unit circle by the

mapping λ 7→ 1 + λ∆t consists of the interior of a circle in the complex plane with

radius −1/∆t and radius 1/∆t. In particular, eigenvalues that lie on the real axis to

the left of −2/∆t will be mapped outside the unit circle. So if we apply the explicit

scheme to the equation (6.16), it may happen that the discrete-time approximation

is unstable even when the original equation is stable.

It depends on the choice of the time step ∆t and on the eigenvalues of the matrix

A whether or not a numerical stability problem as described above may arise. The

eigenvalues of A themselves depend on the discretization step that has been applied

in the state space. To get some idea of the conditions under which a loss of stability

may arise, let us analyze a model problem (that is, a problem that is simple enough

to be completely analyzed and that can be taken as more or less representative of

a large model class). Suppose that we have a one-dimensional state space which

has been discretized using a fixed step ∆x after a logarithmic transformation, and

that, as above, a symmetric difference has been used for the second derivative. For

small ∆x, it is seen from formula (6.12) that the second derivative is the dominant

term in A. Assume that volatility (after the log transformation) is constant, as it

is the case in the standard Black-Scholes model. For convenience, we also replace

the matrix A2 (associated to the second derivative) by the symmetric matrix D

shown in Display 6.3 which differs from A2 only in the first and last row. It can be

shown (see Exc. 2) that, independent of the number of grid points that is chosen,

the eigenvalues of D always lie between 0 and −4; and there are eigenvalues close

4When r is negative, then for instance the time-0 price of a constant payoff at time T is ex-
ponentially increasing with T . To treat such cases numerically, it is advisable to apply first a
time-dependent transformation of variables that removes this behavior.
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D =



−2 1 0 . . . 0

1 −2 1
. . .

...

0 1
. . .

. . . 0
...

. . .
. . . −2 1

0 . . . 0 1 −2


(6.30)

Display 6.3: Matrix for model problem.

to 0 and close to −4. Given ∆x, one should therefore take ∆t such that

−2
1

∆t
≤ −4

1
2σ

2

(∆x)2

or in other words

σ
√

∆t ≤ ∆x. (6.31)

The quantity that appears at the left hand side can be interpreted as a measure of

the “typical change of the state variable” corresponding to the time interval ∆t.

The constraint (6.31) may be unpleasant. If for instance the step in the space

direction is halved in order to improve the accuracy of the approximation in the

x-direction, then the number of time steps must be quadrupled to keep the ratio

σ
√

∆t/∆x the same. This by itself causes the computation time to be multiplied by

four, in addition to the effects of working with a larger matrix A. The presence of the

stability condition (6.31), which appears in similar form also for higher-dimensional

state spaces, is therefore a disadvantage of the explicit method.

The analysis may be carried out similarly for the more general method (6.21).

According to the properties of eigenvalues of matrices of the form q(A)−1p(A) as

discussed above, the eigenvalues of the matrix (I−θ∆t A)−1(I+ (1−θ)∆t A) which

appears in (6.21) are obtained from the eigenvalues of A by applying the transfor-

mation

λ 7→ 1 + (1− θ)∆t λ
1− θ∆t λ

. (6.32)

In the model problem analyzed above, the eigenvalues of the matrix A range from

a little bit less than 0 to approximately −2σ2/∆x2. This leads to the stability

condition ∣∣∣∣1− 2(1− θ)κ
1 + 2θκ

∣∣∣∣ < 1 with κ :=
σ2∆t

∆x2
. (6.33)

The condition above can be rewritten as

(1− 2θ)κ < 1. (6.34)
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For θ = 0 (the explicit method), we arrive at the condition κ < 1 that was already

found above. The constraint on κ becomes less strict for larger values of θ, and no

constraint on κ remains if θ ≥ 1
2 . So in the Crank-Nicolson scheme, and also in

the fully implicit scheme, there is no condition on the time step that is needed to

guarantee stability; these schemes are therefore called unconditionally stable. For

values θ ∈
[

1
2 , 1
]
, the mapping (6.32) takes the open left half of the complex plane

(i.e. the set of complex numbers with negative real part) to the interior of the unit

disc in the complex plane. Therefore, if the matrix A is stable in the continuous-

time sense (all eigenvalues in the open left half of the complex plane), then the

associated matrix (I− θ∆t A)−1(I+ (1− θ)∆t A) is stable in the discrete-time sense

(all eigenvalues inside the unit disc).

6.6 American options

The simplest computational approach to the pricing of American options is to replace

them by a Bermudan approximation. After discretization in space and in time, the

option value at each point in the time grid is determined as the maximum of the value

of immediate exercise and the continuation value. The latter value is determined as

the value of the European option whose time of maturity is the point in the time

grid that corresponds to the foregoing computational step, and whose payoff is the

approximation to the American option value that has been computed for that point.

In this approach, the American option is treated as a Bermudan option, which can

only be exercised at a limited number of points in time instead of at any point in

time as in the American case. This should reduce the value of the option somewhat,

but the error that is induced in this way tends to zero as the time step becomes

smaller and smaller.

To illustrate the Bermudan approximation method, let the value of immediate

exercise at time t be given by the vector g(t), where the entries of this vector

correspond to the points of a grid in the state space. The recursion (6.18) for

European options is now replaced by

v(t+ ∆t) = max
(
g(t+ ∆t), (I + ∆t A)v(t)

)
(6.35)

where the max refers to the componentwise maximum. Instead of the explicit form,

one might for instance also use the implicit or Crank-Nicolson form.

To get a wider array of choices in computation, start from the basic pricing

equation (3.68) for American options, which takes the place of the equation (6.9)

that applies for European options. We can write (3.68) in a form akin to (6.9), but

instead of the single equation (6.9) we get that, for every t and x, at least one of
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the following sets of equalities and inequalities should be satisfied:

−∂π
∂t
≥ ∂π

∂x
(µX − σXλ) + 1

2 tr
∂2π

∂x2
σXσ

>
X − rπ and π = F (6.36a)

−∂π
∂t

=
∂π

∂x
(µX − σXλ) + 1

2 tr
∂2π

∂x2
σXσ

>
X − rπ and π ≥ F. (6.36b)

As before, we may first do a transformation of variables, then discretize in space

and reverse the parametrization of time. The conditions (6.36) are then replaced

by the requirement that, for every t and i, at least one of the following should be

satisfied (compare (6.16)):

dvi
dt

(t) ≥ (Av(t))i and vi(t) = gi(t) (6.37a)

dvi
dt

(t) = (Av(t))i and vi(t) ≥ gi(t) (6.37b)

where g(t) is a discretized version of the payoff function F (t, ·), suitably transformed

in case a transformation of variables has been done. The size of the matrix A and

the length of the vector g(t) are equal to the number of grid points used. The

equations (6.37) can be written more concisely in vector notation, as follows:

0 ≤ dv

dt
(t)−Av(t) ⊥ v(t)− g(t) ≥ 0 (6.38)

with componentwise inequalities; the zero symbols on the left hand side and the right

hand side represent n-vectors. This is indeed the same as the conditions stated in

(6.37), because the condition x ⊥ y is satisfied for nonnegative vectors x and y in

Rn if and only if for each i = 1, . . . , n, either xi = 0 or yi = 0 or both. An equivalent

reformulation is

min

(
dv

dt
(t)−Av(t), v(t)− g(t)

)
= 0 (6.39)

where the componentwise minimum is used and again the symbol 0 on the right hand

side is actually a vector of zeros. One may introduce so-called “slack variables” by

defining

z(t) =
dv

dt
(t)−Av(t), w(t) = v(t)− g(t) (6.40)

which leads to a representation of (6.37) in the form

dv

dt
(t) = Av(t) + z(t) (6.41a)

w(t) = v(t)− g(t) (6.41b)

0 ≤ w(t)⊥ z(t) ≥ 0. (6.41c)
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The last line may also be written as min(w(t), z(t)) = 0. The conditions that appear

in (6.41c) are called complementarity conditions since they express that the sets of

indices i at which wi = 0 and of indices i at which zi = 0 are complements, at least

in the typical situation in which there are no indices i for which one has both wi = 0

and zi = 0. Indices with wi = 0 correspond to grid points in the exercise region,

whereas indices such that zi = 0 refer to grid points in the continuation region.

Complementarity conditions form a typical structure that occurs in optimization

problems subject to constraints (slack variables vs. Lagrange5 multipliers) as well

as in many situations in physics and engineering that involve unilateral constraints.

Starting from (6.39) or one of the equivalent formulations, time-stepping schemes

can be constructed by replacing the continuous-time expressions by expressions in

terms of variables v(t) and v(t + ∆t), which can be solved for v(t + ∆t) when v(t)

is given. To take a time step, it is natural to assume that the complementarity

conditions are already satisfied at time t, and then to derive equations for v(t+ ∆t)

from the requirement that these conditions should also hold at time t + ∆t. A

scheme that is similar to the explicit scheme for European options is the following:

min

(
v(t+ ∆t)− v(t)

∆t
−Av(t), v(t+ ∆t)− g(t+ ∆t)

)
= 0.

This condition is equivalent to6

min
(
v(t+ ∆t)− (I + ∆tA)v(t), v(t+ ∆t)− g(t+ ∆t)

)
= 0.

The unknown v(t+ ∆t) can be taken out:

v(t+ ∆t) + min
(
−(I + ∆tA)v(t), −g(t+ ∆t)

)
= 0.

In other words,

v(t+ ∆t) = max
(
(I + ∆tA)v(t), g(t+ ∆t)

)
. (6.42)

This scheme can be interpreted as resulting from an approximation of the Amer-

ican option as a Bermudan option which can be exercised as the sample times

0,∆t, 2∆t, . . . , with (I + ∆tA)v(t) as an approximation of the continuation value

at time point t + ∆t (compare (6.18)),7 while g(t + ∆t) represents the value of

immediate exercise. Although the error propagation in the American case is more

5Joseph-Louis Lagrange (1736–1813), Italian/French mathematician and astronomer.

6Note that the condition min(x, y) = 0, for x, y ∈ Rn, is equivalent to min(c1x, c2y) = 0 for any
c1, c2 > 0.

7Recall that the time parameter used in the computation is in reverse direction, so that time
point t+ ∆t is T − t−∆t in actual time.
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complicated than what is shown by (6.29), it is still advisable to keep the eigenvalues

of the recursion matrix, which is equal to I+∆tA in this case, within the unit circle.

This means that the same restrictions apply as in the case of the explicit method

for European options.

A more general scheme can be obtained by using an expression for the discretized

time derivative as in (6.21). One can write the set of conditions to be satisfied by

v(t+ ∆t) as follows:

min
(
η
(
(I − θ∆tA)v(t+ ∆t)− v0

)
, v(t+ ∆t)− g(t+ ∆t)

)
= 0 (6.43)

where v0 := (I + (1 − θ)∆tA)v(t) is used as a shorthand, and where a positive

parameter η is introduced to create an additional degree of freedom in the numerical

procedure.8 The condition (6.43) is equivalent to

v(t+ ∆t) = max
(
(I − η(I − θ∆tA))v(t+ ∆t) + ηv0, g(t+ ∆t)

)
. (6.44)

In contrast to the case of the explicit method, it is not possible to write down the

solution immediately. The equation (6.44) is of the form of a fixed-point equation,

and a natural way to solve it would be iteration: start with an initial guess for

v(t+∆t), insert that into the right hand side of (6.44) to obtain a new and hopefully

improved guess, insert the new guess into the right hand side of (6.44) to obtain

a second new guess, and so on. Due to the presence of the max operator, this

is a nonlinear iteration and its convergence behavior is not easily analyzed. It is

advisable though to make sure that the eigenvalues of the matrix I − η(I − θ∆tA)

are inside the unit circle. If we assume as before that the eigenvalues of the matrix

A range from 0 to −2κ, this means that both 1 − η and 1 − η(1 + 2θκ) should be

less than 1 in absolute value. The stability criterion (6.34) is to be satisfied as well;

note that this criterion can also be written as 1 + 2θκ > κ. It follows that η should

be less than 2/κ; in particular, no single value of η is good enough to accommodate

all values that κ might take.

An alternative route is to consider not v(t + ∆t) directly as the unknown, but

rather (I − θ∆tA)v(t+ ∆t). Instead of (6.43), one then obtains the condition

min
(
y − v0, η

(
(I − θ∆tA)−1y − g(t+ ∆t)

))
= 0

where again a parameter η > 0 is inserted, although on the other side since that is

more convenient in this case. The condition above can be rewritten as

y = max
(
v0, (I − η(I − θ∆tA)−1)y + ηg(t+ ∆t)

)
.

8For even more degrees of freedom, one can note that, for any diagonal matrix H with positive
elements on the diagonal, min(Hx, y) = 0 is also equivalent to min(x, y) = 0.
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The conditions associated with the eigenvalues of the matrix that appears in the

iteration are now |1−η| < 1 and |1−η/(1+2θκ)| < 1. These conditions are satisfied

when η < 2, irrespective of the value of κ.

The procedures that are suggested here to find numerical solutions of (6.41)

by time stepping are by no means the only ones possible. In the mathematical

programming literature, extensive studies have been made of problems of the form

0 ≤ w⊥ q +Mw ≥ 0 (6.45)

where w ∈ Rn is the unknown, q ∈ Rn is a given vector, and M is a given n × n
matrix. A problem of this type is called a “Linear Complementarity Problem”

(LCP). It is known that the problem (6.45) is uniquely solvable for each given q if and

only if all principal minors9 of M are positive. Many algorithms have been devised

to solve LCPs; the literature is somewhat analogous to the literature on linear

programming and contains pivoting methods as well as iterative methods. Pivoting

methods aim at finding the complementary index sets {i |wi > 0} and {i |wi = 0}.
In applications to pricing of American options, these index sets correspond to the

exercise region and the continuation region. In specific cases, it may be possible to

parametrize these regions in a simple way; for instance, in the case of a put option

in the Black-Scholes model, it is clear that one only needs to find the separation

point between the exercise region which contains low values of the underlying and

the continuation region, which contains high values. Using this information, one

might construct a very efficient pivoting algorithm.

A simple approximation scheme is shown in Code Example 6.1. The scheme

uses a wide grid in the direction of the current price of the underlying, and a large

number of time steps. Recursion is carried out with no transformation of variables;

the Bermudan approximation is used, with the continuation value being computed

by the Crank-Nicolson method. The result of the calculation is shown in Fig. 6.1.

6.7 Markov chains and tree methods

The finite-difference method applies discretization to a partial differential equation

that describes the exact solution to an option pricing problem. The discretization

is necessary in cases in which no analytical solution can be found. But, given

that approximation is necessary anyway, one might argue that discretization could

be applied already at an earlier stage. If the process of the underlying asset ST

is replaced by a process that takes place in discrete time steps and in a discrete

9A principal submatrix of a given n×n matrix M is a submatrix of the form (mij)i∈α,j∈α where
α is a nonempty subset of the index set {1, . . . , n}. The principal minors of M are the determinants
of the principal submatrices of M .
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r = 0.03; sigma = 0.2; K = 100; T = 1;

Smin = 50; Smax = 250; Nx = 100; Nt = 100;

dx = (Smax-Smin)/Nx; dt = T/Nt;

S = (Smin:dx:Smax)’; N = length(S);

D1 = (1/dx)*(diag([-0.5*ones(1,N-2) -1],-1) + ...

diag([-1 zeros(1,N-2) 1], 0) + ...

diag([ 1 0.5*ones(1,N-2)], 1));

D2 = (1/dx^2)*(diag([ones(1,N-2) 0],-1) + ...

diag([0 -2*ones(1,N-2) 0], 0) + ...

diag([0 ones(1,N-2)], 1)) ;

mS = diag(S); % multiplication by S

mS2 = diag(S.^2); % multiplication by S^2

A = r*mS*D1 + 0.5*sigma^2*mS2*D2 - r*eye(N); % assemble matrix A

% start recursion

V = max(K-S,0); % initial condition

for i = 1:Nt

V = (eye(N)-0.5*dt*A)\((eye(N)+0.5*dt*A)*V); % CN method

V = max(V,K-S); % max of continuation value and exercise value

end

% end recursion

plot(S,[V max(K-S,0)]); axis([70 150 0 30]) % exc value for comparison

xlabel(’value of underlying at t = 0’); ylabel(’option value’)

Code Example 6.1: Approximation scheme for the calculation of the value of an American
put option in the BS model, as a function of the underlying.
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Figure 6.1: Value of an American put option as a function of the value of the underlying
at time 0, as computed by Code Example 6.1.
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state space (i.e., a finite set) then the problem of computing a quantity of the form

E[F (ST )] can still be stated; moreover, if the number of time steps and/or states

is not excessively large, it may be possible to solve this problem exactly. We then

have an exact solution of an approximate problem, which may serve just as well as

an approximate solution of the exact problem. The underlying philosophy is that,

whenever one constructs an approximation scheme, it is helpful if the approximating

scheme is not just a numerical construct but has an interpretation by itself. The

availability of such an interpretation makes it easier to understand what is happening

in the scheme, and to ensure that desired properties will indeed hold. As will be seen

below, computational schemes that are obtained from constructing an exact solution

to an approximate problem can sometimes be the same as schemes that are designed

as approximate solutions to an exact problem. In such cases, the alternative view

can be useful to grasp the meaning of approximations that have been made.

6.7.1 Random walks and Markov chains

A simple example of approximation of a continuous-time continuous-state10 stochas-

tic process by a discrete-time discrete-state process is the approximation of Brownian

motion by a random walk. Let a process Xt be defined by

Xt = x0 + σWt (6.46)

where Wt is a Brownian motion. Let ∆t be a time step. For k = 1, 2, . . . , we have

Xk∆t = x0 + σ

k∑
i=1

(Wi∆t −W(i−1)∆t) = x0 +

k∑
i=0

Zi (6.47)

where the random variables Zi := σ(Wi∆t − W(i−1)∆t) form an i.i.d. sequence of

normally distributed variables with expectation 0 and variance σ2∆t. The values

of the process Xt at times k∆t therefore can be described as a cumulative sum of

independent random variables. Suppose now that the i.i.d. random variables Zi are

replaced by i.i.d. variables Ẑi that can only take two values, namely ∆x and −∆x,

with equal probabilities. The expectation of Ẑi is 0 and the variance is ∆x2, which

is equal to the variance of the normal increments in (6.47) if we take

∆x = σ
√

∆t. (6.48)

10The term “state” is used here in the general sense of stochastic processes, as a possible value
that the process may take, rather than in the specific sense of the state space model (3.1).
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The central limit theorem implies that, for large N , the distribution of
∑N

i=1 Ẑi

approximates the distribution of
∑N

i=1 Zi. The discrete-time process given by

X̂k = x0 +
k∑
i=1

Ẑi (k = 0, 1, 2, . . . ). (6.49)

is called a random walk. Due to the fact that the increments in (6.49) are inde-

pendent, all statistical properties of the process X̂k after a given index k0 depend

on the history of the process up to k0 only through X̂k0 ; what happened before k0

doesn’t matter. This is the “Markovian property” that was already discussed in

Section 3.1.1 for the case of state processes described by SDEs: the current value

of the state contains all information from the past that is relevant to the future.

Another property of the random walk is that, unlike the process Xt which can

take all real values, the values it can take are confined to the countably infinite set

{x0 + i∆x | i ∈ Z}. The Markovian property and the restriction of values that the

process may take to a finite or countably infinite set are the defining characteristics

of what are called Markov chains. The set of values that can be taken is called the

state space of the chain.

Due to the Markov property, the statistical properties of a Markov chain are

determined fully by only specifying the transition probabilities, which are the prob-

abilities that the process will take the value j at step k+1, given that it is in state i

at time k. Usually, the assumption is made that these probabilities depend only on i

and j, and not on the time index k. Markov chains that satisfy this property are said

to be homogeneous. The random walk can be described in terms of a homogeneous

Markov chain by defining the state space to consist of the set {x0 + i∆x | i ∈ Z},
with transition probabilities defined by

pij =

{
1
2 if j = i+ 1 or j = i− 1

0 else.
(6.50)

Specifically, the random walk is the process that is obtained from this chain by

imposing the initial condition X̂0 = x0.

For the purpose of numerical calculation, we like to work with Markov chains

that have a finite state space. The approximation of the process Xt by means of

the random walk X̂k as described above would require an infinite state space if

considered on intervals of arbitrary length, but fortunately most problems that are

encountered in contingent claims analysis are equipped with a finite end date. In

particular, in a European option pricing problem one is asked to compute a quantity

of the form E[F (XT )] where F is a given function and T is a fixed time. In such a

situation, it is enough to have an approximation of the process Xt on the interval

[0, T ]. The time step would then be taken equal to ∆t = T/N where N is a number
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that is sufficiently large to ensure that the approximation of XT by X̂N is good

enough for the desired accuracy. The state space can be restricted to the finite set

{x0 −N∆x, . . . , x0 −∆x, x0, x0 + ∆x, . . . , x0 +N∆x}. The transition probabilities

for the Markov chain to be defined on this set can be defined as in (6.50), except at

the boundaries i = −N and i = N . The corresponding states can only be reached

at time T so it could be said that it is irrelevant how the transition probabilities are

defined here, but for completeness one might for instance specify that the boundary

states are absorbing, i.e., pii = 1 for i = −N and i = N .

To obtain an approximate value for a quantity E[f(XT )] from the random walk

approximation, it is natural to replace XT by X̂N and to define

πik = E[F (X̂N ) |X̂k = x0 + i∆x] (i = −k, . . . , k).

From the tower law of conditional expectations, it follows that π0
0 = E[F (X̂N )] can

be computed recursively as follows:

πiN = F (x0 + i∆x) (i = −N, . . . , N) (6.51a)

πik = E[πjk+1 |X̂k = x0 + i∆x] = 1
2π

i+1
k+1 + 1

2π
i−1
k+1

(k = N − 1, . . . , 0; i = −k, . . . , k). (6.51b)

This computational scheme can be compared to the one that would be obtained from

the PDE associated to the continuous-time continuous-state process Xt. Define

π(t, x) = E[F (XT ) |Xt = x].

Assuming that this function is sufficiently smooth, one can apply the Itô formula:

dπ(t,Xt) =
∂π

∂t
(t,Xt) dt+

∂π

∂x
(t,Xt) dWt + 1

2 σ
2∂

2π

∂x2
(t,Xt) dt.

From this it follows that

π(t, x) = E[π(t+ ∆t,Xt+∆t) |Xt = x]

= π(t, x) +
(∂π
∂t

(t,Xt) + 1
2 σ

2∂
2π

∂x2
(t,Xt)

)
dt+ o(∆t)

where o(∆t) denotes a term that is small relative to ∆t.11 Subtracting π(t, x) from

both sides, dividing by ∆t, and taking the limit as ∆t tends to 0, one finds that

11The notation f(x) = o(g(x)) (x→ a) in general means that limx→a f(x)/g(x) = 0. In particu-
lar, a term o(xk) (x ↓ 0) represents a quantity that approaches 0 more rapidly than xk, as x tends
to 0.
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π(t, x) satisfies the partial differential equation

− dπ

dt
(t, x) = 1

2 σ
2 ∂

2π

∂x2
(t, x) (6.52)

which is known as the Kolmogorov backward equation in the theory of stochastic

processes.12 The standard explicit approximation scheme with time step ∆t and

space step ∆x, based on the formula (6.7) for the second derivative with respect to

x, leads to the computational scheme

π̂ik = π̂ik+1 + 1
2σ

2
π̂i+1
k+1 − 2π̂ik+1 + π̂i−1

k+1

∆x2
∆t

where π̂ik is an approximation to π(k∆t, x0 + i∆x). If one takes ∆x = σ
√

∆t as in

(6.48), the scheme simplifies to

π̂ik = 1
2 π̂

i+1
k+1 + 1

2 π̂
i−1
k+1 (6.53)

which is the same as (6.51b). The computational scheme that is derived from the

random walk approximation can therefore be viewed as a special case of the ex-

plicit approximation scheme for the PDE (6.52), with the central difference formula

applied to approximate the second-order derivative in the space direction.

The computational process expressed by (6.51b) or (6.53) may be visualized as

follows. Imagine the states of the Markov chain as bins that contain marbles. The

bins are numbered from −N to N . The process is initialized by placing F (x0 + i∆x)

marbles in bin i.13 At each step, one half of the marbles in each bin are moved

to the bin to the right, while the other half are moved to the bin to the left. The

number of marbles that end up at bin 0 after N steps is the sought after quantity

π0
0. While carrying out this process, one does not need to bother about the marbles

that are moved to bins from which bin 0 can no longer be reached in the remaining

stages. Therefore, while the process starts with bins −N to N , after k steps one

only needs to be concerned with bins −N +k to N −k. The process that is reduced

in this way takes place on a triangle-shaped domain, which motivates the term “tree

method”. Another reduction of the effort in moving marbles can be achieved if it

is noted that, after each step, all of the marbles that were in even-numbered bins

before are now in odd-numbered bins, and vice versa. If the number N of steps is

even, this means that the final outcome π0
0 of the process is entirely determined by

the numbers of marbles that were in even-numbered bins at the start of the process,

while the result is determined entirely by the marbles initially in the odd-numbered

12Andrey Nikolaevich Kolmogorov (1903–1987), Russian mathematician.

13It is assumed here that the marbles can be cut, to accommodate non-integer quantities; if the
payoff function F can take negative values, then also antimarbles need to be brought into play.
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bins in case N is odd. Supposing for instance that one takes N to be even, the

odd-numbered bins can be dispensed with by doubling the step; the computational

scheme becomes

πik = 1
4π

i+2
k+2 + 1

2π
i
k+2 + 1

4π
i−2
k+2 (k = N − 2, . . . , 2, 0; i = −k, . . . , k). (6.54)

The same computational scheme is obtained from the explicit finite-difference

scheme based on central differences, if one takes the time step and the space step

equal to 2∆t and 2∆x respectively. While the choice ∆x = σ
√

∆t puts the single-

step scheme right on the boundary of the safe region in terms of stability analysis

(see (6.31)), in the two-step scheme one has

σ2(2∆t)

(2∆x)2
= 1

2

so that the stability criterion is satisfied with a considerable margin.

As we have seen, the computational method obtained from the random walk

approximation of Brownian motion can be interpreted as a special case of the explicit

finite-difference method. Conversely, one can say that the explicit finite-difference

based on the central-difference formula has a Markov chain interpretation if the

space step ∆x and the time step ∆t are related by ∆x = σ
√

∆t. If instead the

space step and the time step are related by ∆x =
√

2σ
√

∆t, then there is a Markov

chain interpretation as well, since the two-step random walk is also a Markov chain,

with transition probabilities pij = 1
4 if j = i + 1 or j = i − 1, and pii = 1

2 .

Generally, a computational scheme for the PDE (6.52) can be given a Markov chain

interpretation (in the sense that the scheme, which is defined on a certain grid in

the state space, is the same as the one that would be obtained from a Markov chain

defined on the same grid by the recursion πik = E[πjk+1 | X̂k = xi]) if the recursion

matrix of the scheme can be interpreted as a matrix of transition probabilities. This

means that the elements of the matrix must be nonnegative, and that the sum of

the entries in each row must be equal to 1. If A2 is a matrix that represents a

numerical approximation to the second order derivative, then a typical recursion

matrix in the explicit method is I + cA2, where c = 1
2σ

2∆t/∆x2 ≥ 0, while in the

implicit method and in the Crank-Nicolson method the corresponding matrices are

(I − cA2)−1 and (I − 1
2cA2)−1(I + 1

2cA2) respectively. The condition for the row

sums of a matrix M to be equal to 1 can be written in the form M1 = 1, where 1

is the vector all of whose entries are equal to 1. For any reasonable approximation

A2 of the second-order differential operator one should have A21 = 0, since the

second derivative of a constant function is 0. This implies that (I + ∆tA2)1 = 1.

From (I − ∆tA2)1 = 1 it follows that (I − ∆tA)−1
1 = 1 as well, and likewise it

can be shown that the row sum criterion is satisfied also by the recursion matrix
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corresponding to the Crank-Nicolson scheme. However, the nonnegativity criterion

is not always satisfied. For instance, in the explicit scheme with matrix A2 as in

(6.11), the condition for all entries of I + cA2 to be nonnegative is 1− 2c ≥ 0, or in

other words σ2∆t/∆x2 ≤ 1. This condition is satisfied with equality in the case of

the random walk interpretation (6.49). Looking at I + cA2, with A2 given by (6.11)

and c ≤ 1
2 , as a matrix of transition probabilities, the fact that the first and last

rows of the matrix A2 are filled with zeros is seen to correspond to the assumption

that the outmost states are absorbing.

6.7.2 Binomial and trinomial trees

Now, let us turn to the point where many basic courses on option pricing start,

namely the binomial tree method. Consider an option that will expire at time T ,

and take a fixed time step ∆t = T/N ; N is the number of time steps. Write ti = i∆t

for i = 0, . . . , n, and denote the price Si+1 of the underlying at time ti by Si. In

the binomial model, it is assumed that the price of the underlying at time ti+1,

given the price at time ti, can only take two values which relate to the value at

time ti by constant factors that are traditionally denoted by u (for “up”) and d (for

“down”). The probabilities of these two asset price changes under the risk-neutral

measure are likewise constant in time; the risk-neutral probability of an “up” move

is denoted by q, so that the probability under Q of a “down” move is 1 − q. The

model also includes a riskless asset that follows the evolution Bi+1 = (1 + r)Bi. To

prevent confusion between the interest rate r that appears here, which is a discretely

compounded interest rate with the time step as the unit of time, and the interest

rate parameter in the Black-Scholes model (which is a continuously compounded

interest rate with one year as the unit of time), the latter will be denoted by rBS in

this section. The martingale condition for the asset S is14

Si =
1

1 + r

(
quSi + (1− q)dSi

)
.

This implies

q =
1 + r − d
u− d

. (6.55)

The value of q that is determined in this way lies strictly between 0 and 1 under the

condition

u > 1 + r > d

14It is actually the condition for the relative asset price Si/Bi to be a martingale with respect to
the probabilities q and 1− q.
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which is required to prevent arbitrage between the riskless asset and the risky asset.

The value of the underlying at the time of expiry can be written as

SN = uJdN−JS0 = S0 exp
(
N log d+ (log u− log d)J

)
, J ∼ B(N, q) (6.56)

whereB(N, q) refers to the binomial distribution with number of trialsN and success

probability q. The above expression can be compared to the one that holds in the

Black-Scholes model under the risk-neutral measure:

ST = S0 exp
(
(rBS − 1

2σ
2)T + σ

√
T Z

)
, Z ∼ N(0, 1). (6.57)

As is well known, the binomial distribution with parameters N and q and the nor-

mal distribution with expectation Nq and variance Nq(1 − q) can be looked at as

approximations of each other, in particular in cases where N is large and q is not

close to either 0 or 1. To make the binomial model converge to the BS model, the

parameters u, d, and r should be taken such that

lim
N→∞

(
Nq log u+N(1− q) log d

)
= (rBS − 1

2σ
2)T

lim
N→∞

Nq(1− q)(log u− log d)2 = σ2T.

After dividing by N (i.e., multiplying by ∆t/T ) this can be written as

q log u+ (1− q) log d = (rBS − 1
2σ

2)∆t+ o(∆t) (6.58)

q(1− q)(log u− log d)2 = σ2∆t+ o(∆t) (6.59)

as ∆t ↓ 0. We can show the following.

Lemma 6.7.1 The conditions (6.58) and (6.59) are satisfied if the parameters u,

d, and r in the binomial model are chosen as functions of ∆t in such a way that

u = 1 + σ
√

∆t+ o(
√

∆t) (6.60)

d = 1− σ
√

∆t+ o(
√

∆t) (6.61)

r = rBS∆t+ o(∆t) (6.62)

and the parameter q is determined by the martingale condition (6.55).

Proof Using the standard expansion log(1+x) = x− 1
2x

2 +o(x2), one obtains from

(6.60) and (6.61) that

log u = u− 1− 1
2σ

2∆t+ o(∆t), log d = d− 1− 1
2σ

2∆t+ o(∆t).
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The martingale condition (6.55) implies that q(u− 1) + (1− q)(d− 1) = r, so that

from the above and (6.62) it can be concluded that (6.58) holds. Furthermore, from

(6.55) and (6.60–6.62) it follows that

q =
σ
√

∆t+ o(
√

∆t)

2σ
√

∆t+ o(
√

∆t)
=

1 + o(1)

2 + o(1)
= 1

2 + o(1)

so that q(1 − q) = 1
4 + o(1). Since (log u − log d)2 = (2σ

√
∆t) + o(

√
∆t))2 =

4σ2∆t+ o(∆t), it is seen that (6.59) holds as well. �

The conditions above allow for various approximation schemes. In a sense, the

simplest choice would be to take

u = 1 + σ
√

∆t, d = 1− σ
√

∆t, r = rBS∆t, q =
σ
√

∆t+ rBS∆t

2σ
√

∆t

but one can also use

u = 1 + σ
√

∆t+ rBS∆t, d = 1− σ
√

∆t+ rBS∆t, r = rBS∆t, q = 1
2

or

u = eσ
√

∆t, d = e−σ
√

∆t, r = erBS∆t − 1, q =
erBS∆t − e−σ

√
∆t

eσ
√

∆t − e−σ
√

∆t
. (6.63)

The specification of r as in (6.63) guarantees that not only the stock, but also

the bond is priced exactly in the tree model for every value of ∆t, and not just

asymptotically as ∆t tends to 0.

Consider now the pricing of a European option whose value at time T is given

by CT = F (ST ), where F is a given payoff function. Let πjk denote the option price

at the point in the tree where k forward time steps have been taken and j “up”

moves have occurred, with 0 ≤ j ≤ k. In the binomial tree model, the price π0
0 at

time 0 is computed by setting πjN = F (ujdN−jS0) for 0 ≤ j ≤ N , and calculating

recursively

πjk =
1

1 + r

(
qπj+1

k+1 + (1− q)πjk+1

)
(k = N − 1, . . . , 0; j = 0, . . . , k). (6.64)

The grid points Sjk = ujdk−jS0 become equally spaced when a log transformation is

applied, so it is natural to compare the binomial tree recursion to a finite-difference

scheme for the Black-Scholes model written in terms of the logarithm of the stock

price, as in (6.14). The difference schemes that were considered above were based

on a fixed grid in the underlying; such a grid is also obtained in the binomial tree

model if the approximation scheme (6.63) is adopted, which satisfies the condition
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ud = 1.15 The binomial tree method then falls in the category of explicit finite-

difference methods which express the option price at time t in grid point i in terms

of the option price at time t+ ∆t in grid points i− 1, i, and i+ 1. The grid points

obtained from the tree method at step k under the condition ud = 1, after log

transformation, are given by

logS0 + j log u+ (k − j) log d = logS0 + (2j − k) log u (0 ≤ k ≤ N, 0 ≤ j ≤ k)

which fit into the grid

xi = logS0 + i∆x (−N ≤ i ≤ N) (6.65)

if one takes ∆x = log u. The tree method uses the even-numbered grid points xi

when k is even and the odd-numbered ones when k is odd. In particular, note that

if index j in the tree method corresponds to index i in the fixed grid (6.65), then

index j + 1 corresponds to i+ 2, rather than to i+ 1.

The explicit finite difference methods discussed above were constructed with the

aim of providing approximations that are of first order in the time step ∆t and of

second order in the space step ∆x. Writing π̂ik for the approximate option value at

time t = k∆t and grid point xi = logS0 + i∆x, one finds the following expression

for the recursion implied by an explicit scheme based on central difference formulas

for the log-transformed BS equation (6.14):

π̂ik = (1− rBS∆t)π̂ik+1 + (rBS − 1
2σ

2)
∆t

2∆x

(
π̂i+1
k+1 − π̂

i−1
k+1

)
+ 1

2σ
2 ∆t

∆x2

(
π̂i+1
k+1 − 2π̂ik+1 + π̂i−1

k+1

)
=
(

1− rBS∆t− σ2 ∆t

∆x2

)
π̂ik+1 + 1

2σ
2 ∆t

∆x2

(
π̂i+1
k+1 + π̂i−1

k+1

)
+ 1

2(rBS − 1
2σ

2)
∆t

∆x

(
π̂i+1
k+1 − π̂

i−1
k+1

)
=
(

1− rBS∆t− σ2 ∆t

∆x2

)(
π̂ik+1 − 1

2(π̂i+1
k+1 + π̂i−1

k+1)
)

+ 1
2(1− rBS∆t)

(
π̂i+1
k+1 + π̂i−1

k+1

)
+ 1

2(rBS − 1
2σ

2)
∆t

∆x
(π̂i+1
k+1 − π̂

i−1
k+1). (6.66)

15Finite-difference schemes can also be constructed on grids that shift in time. In fact, for
equations of the form (6.14) this is recommended practice in cases in which the “convection term”
(i.e. the term associated to the first-order derivative) is important relative to the “diffusion term”
(the term associated to the second derivative).
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Suppose now that ∆x is chosen as a function of ∆t in such a way that σ2∆t/∆x2 → 1

as ∆t tends to zero, or in other words

σ2∆t

∆x2
= 1 + o(1) (∆t ↓ 0). (6.67)

We then have

(rBS − 1
2σ

2)
∆t

∆x
=
rBS − 1

2σ
2

σ

σ
√

∆t

∆x

√
∆t =

rBS − 1
2σ

2

σ

√
∆t+ o(

√
∆t).

Also note that16

π̂ik+1 − 1
2(π̂i+1

k+1 + π̂i−1
k+1) = O(∆x2) = O(∆t) (6.68)

and

π̂i+1
k+1 − π̂

i−1
k+1 = O(∆x) = O(

√
∆t). (6.69)

Therefore, under the condition (6.67), we can write

π̂ik = (1− rBS∆t)
[

1
2

(
1 +

rBS − 1
2σ

2

σ

√
∆t
)
π̂i+1
k+1

+ 1
2

(
1−

rBS − 1
2σ

2

σ

√
∆t
)
π̂i−1
k+1

]
+ o(∆t). (6.70)

Note that an error of magnitude o(∆t) is already incurred by using the first-order

difference approximation for the partial derivative with respect to time, so that

a modification of the expression for π̂ik by a term of this size may be considered

acceptable. The equation (6.70) then shows that the recursion that is derived from

the finite-difference interpretation can be written in the form of a binomial tree if the

condition (6.67) is imposed. Conversely, every binomial tree method that satisfies

the conditions of Lemma 6.7.1 and the condition ud = 1 agrees with the scheme

(6.70) up to a term of size o(∆t). This follows by noting that the condition (6.58),

in the case ud = 1 so that log d = − log u, can be rewritten as (2q − 1) log u =

(rBS − 1
2σ

2)∆t+ o(∆t) which implies (using (6.60))

2q − 1 =
(rBS − 1

2σ
2)∆t+ o(∆t)

σ
√

∆t+ o(
√

∆t)
=
rBS − 1

2σ
2 + o(1)

σ + o(1)

√
∆t

=
rBS − 1

2σ
2

σ

√
∆t+ o(

√
∆t)

16The notation f(x) = O(g(x)) (x→ a) means that there is a constant c such that |f(x)/g(x)| ≤ c
for all x in a sufficiently small neighborhood of a; in other words, the quotient f(x)/g(x) remains
bounded as x tends to the limit value a.
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so that

q = 1
2

(
1 +

rBS − 1
2σ

2

σ

√
∆t
)

+ q1 (6.71)

where q1 = o(
√

∆t). From this one finds

qπj+1
k+1 + (1− q)πjk+1 =

1
2

(
1 +

rBS − 1
2σ

2

σ

√
∆t
)
πj+1
k+1 + 1

2

(
1−

rBS − 1
2σ

2

σ

√
∆t
)
πjk+1 + 1

2q1(πj+1
k+1−π

j
k+1).

The final term on the right hand side is of size o(∆t) under the assumption that

(6.67) holds with ∆x = log u; see (6.69). From (6.62) it follows that

1

1 + r
= 1− rBS + o(∆t).

Taking everything together, it is seen that the recursion from the binomial tree

method subject to the conditions of Lemma 6.7.1 and the requirement ud = 1 is

the same as the recursion from the finite-difference method subject to the condition

(6.67), up to a term of size o(∆t).

The explicit form of the finite-difference method, with the three-point approxi-

mation formulas for the differential operator in the space direction, in general leads

to a trinomial computational scheme, as seen in (6.66). The trinomial scheme be-

comes binomial (possibly after modification by a term of order o(∆t)) under the

condition (6.67). From a numerical perspective, however, there is not much to say

in favor of choosing the ratio σ2∆t/∆x2 equal to 1; a smaller value may be prefer-

able. In particular, the analysis in the case of the random walk approximation of

Brownian motion suggests that N steps of the trinomial scheme corresponding to

the value σ2∆t/∆x2 = 1
2 are comparable to 2N steps of the binomial scheme.

The trinomial scheme is still a tree method, so that the number of points in

the space domain that need to be taken into account decreases as the computation

progresses. This contributes to efficiency, as compared to the implicit and Crank-

Nicolson methods which do not admit reduction of the number of grid points in

the state space. In the one-dimensional problems for which the tree method is de-

signed, however, computation time is unlikely to be a major issue. Moreover, the

tree method concentrates on the option value for one specific value of the underly-

ing, whereas there are also situations in which it is desired to have option values

corresponding to a range of values of the underlying; for instance, to obtain val-

ues for the sensitivity of the option value to the value of underlying (“delta” and

“gamma”), or in cases where the computation is used as an intermediate stage in

the valuation of a compound option.

In a tree method, the number of time steps also determines the extent of the

grid in the state space at the time of maturity. For instance, when ∆x = σ
√

∆t as
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in the case of the binomial method, then the grid extends to N∆x = Nσ
√
T/N =√

N σ
√
T which may be considered to be rather far out if N is large, given that σ

√
T

is the standard deviation ofXT in the model example (6.46). Using a finite-difference

scheme, one can opt for a more narrow grid. More attention must then be paid to

possible propagation of errors that arise at the boundaries. If the number of grid

points in the state space is chosen to be fairly large in response to this concern, then

the stability condition for the explicit method forces the number of time steps to

be large as well. By using instead an implicit method or a Crank-Nicolson method,

this constraint can be removed.

6.8 Exercises

1. Compute the eigenvalues and eigenvectors of the matrix D defined in (6.30), for

instance for matrix size 100. Find the largest and the smallest eigenvalue. Plot some

of the eigenvectors against their index (i.e., look at the eigenvector as representing

a function of a continuous variable—which is natural since the matrix D is an

approximation of the operation of the second derivative on functions). What kind

of behavior do you observe? Can you explain what you see? [Hint : consider the

ordinary differential equation y′′ = λy for negative values of λ. The eigenvectors of

the matrix D can be viewed as approximate solutions of this differential equation,

where λ is equal to the eigenvalue that corresponds to this eigenvector.]

2. Prove that all eigenvalues of the matrix D defined in (6.30) are in the interval

(−4, 0). [Hint : show that D is negative definite and that D+4I is positive definite.]

Also show that

λmin ≤ −4 + 2/
√
n, λmax ≥ −2/

√
n

where λmin and λmax are the smallest and the largest eigenvalue of D respectively,

and n is the size ofD. [Hint : use the fact, for a symmetric matrix A, the smallest and

the largest eigenvalue can be found as the minimum and the maximum respectively

of the function x>Ax/x>x, defined for x ∈ Rn with x 6= 0.17]

3. In this exercise we compute the price of a call option, as a function of the price of

the underlying, by means of the finite difference method. We work in the standard

Black-Scholes model with the following parameters: σ = 0.2, r = 0.04. The call

option has time of expiry T = 1 and strike K = 100.

a. Implement a finite-difference scheme using the implicit method to compute option

values on a grid of stock values ranging from S0 = 50 to S0 = 200. Use 50 steps in

the asset price direction and 40 steps in the time direction.To present the results of

17This function is called the Rayleigh quotient of A, named after John William Strutt (1842–
1919), 3rd Baron Rayleigh, usually known as Lord Rayleigh; British physicist, Nobel prize 1904.
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the calculation, provide the following output:

(i) a plot of the computed option price as a function of the current price of the

underlying (S0);

(ii) a plot of the difference between the computed solution and the exact solution

as given by the Black-Scholes formula, also as a function of S0;

(iii) the maximum error (i.e. the maximum absolute value of the difference between

the computed value and the value obtained from the Black-Scholes value,

across the stock values in the grid ranging from S0 = 50 to S0 = 200).

b. Repeat the computation with the explicit method and with the Crank-Nicolson

method.

c. For each of the three methods, attempt to find an “economical” (in the sense of

computational time) combination of the numbers of steps in the asset price direction

and in the time direction, achieving a maximum error less than 0.01.

4. Same questions as in Exc. 3, but this time using logarithmically transformed

variables.

5. Write a routine that computes the price of a European option in the standard

Black-Scholes model, as a function of the current value of the underlying, for an

arbitrary payoff. The payoff is assumed to be given as a column vector of values

defined on a logarithmic grid with a fixed step size that is supplied as an input to the

routine. Apply a finite-difference method with a time step that is also supplied as

an input parameter, and use the Crank-Nicolson method to do the time stepping.

6. Consider a Bermudan put option on an underlying asset with current value

S0 = 100, strike K = 100, time of maturity T = 1, and with six regularly spaced

exercise dates until maturity. Assume the Black-Scholes model holds with asset

volatility σ = 0.2 and interest rate r = 0.04. Compute numerically the price of the

option at t = 0. [Hint : the routine of Exc. 5 can be of use here.] Compare the

solution that you obtain to the value of a perpetual American put with the same

parameter values.
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Chapter 7

Monte Carlo methods

The Monte Carlo method for valuation of financial instruments is very popular in

practice. Implementation is often straightforward, once a model for the underlying

assets under a pricing measure has been given. In this chapter, several issues are

discussed that may arise in the use of the method: error analysis, variance reduction,

computation of sensitivities, and application to compounded options.

7.1 Basic Monte Carlo

The Monte Carlo method can be applied whenever the quantity that is to be com-

puted takes the form of an expectation of a given random variable, and it is possible

to draw arbitrarily many samples from that variable. For instance, the surface area

of a circle with diameter 1 is equal to E[f(U1, U2)], where U1 and U2 are indepen-

dent random variables which are both uniformly distributed on the interval [−1
2 ,

1
2 ],

and f(x, y) is the function defined by f(x, y) = 1 if x2 + y2 ≤ 1
4 and f(x, y) = 0

otherwise. So the area of the circle can be computed by the Monte Carlo technique.1

In the field of finance, many quantities that need to be computed appear naturally

in the form of expectations. Especially in situations where several state variables

are involved, the use of the Monte Carlo method can be attractive.

The Monte Carlo estimate of the quantity EX is simply

MCE =
1

n

n∑
i=1

xi (7.1)

where the xi’s (i = 1, . . . , n) are independent draws from the distribution of X. By

definition, therefore, the Monte Carlo estimate is a random variable. Its expectation

is equal to the quantity EX that needs to be computed; under the assumption that

1This example is not one in which the Monte Carlo method would be the method of choice.
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var(X) is finite, the variance of the Monte Carlo estimate is also finite and equals

var(MCE) =
1

n2

(
n · var(X)

)
=

1

n
var(X). (7.2)

Therefore, with 95% confidence we can say that the value of the quantity we want

to compute lies in the interval

[MCE− 1.96
1√
n

std(X),MCE + 1.96
1√
n

std(X)]. (7.3)

Typically we do not know the exact value of the standard deviation of X, but this

quantity can be estimated itself by

ŝ =

√√√√ 1

n− 1

n∑
i=1

(xi −MCE)2.

When std(X) is replaced by ŝ in (7.3), the resulting confidence interval should be

interpreted with care because ŝ itself is an estimated quantity.

It follows from (7.3) that the only assumption needed to make the Monte Carlo

method converge as n tends to infinity is that var(X) should be finite. On the other

hand, the same expression also shows that the rate of convergence is
√
n. In other

words, to get one more decimal of accuracy the number of draws should be increased

by a factor 100. From this point of view, the Monte Carlo method is slow indeed.

On the other hand, the rate of convergence does not depend on factors that badly

affect some other methods, such as the dimension of the space from which the sample

points are drawn, and therefore the Monte Carlo method can be a key resource. The

method provides an answer, although typically not at a high level of precision, in

circumstances where no other methods are feasible. In financial engineering, where

often models are complicated but high accuracy is not required, the Monte Carlo

method is a very popular tool.

The Monte Carlo method can be applied in a straightforward way to European

options which expire at a given date, and with minor modifications it also works in

cases where the option expires at a stopping time that is determined by the state

variables, such as in the case of a barrier option. However, when exercise is at

the discretion of the holder as in the case of American options, then application of

Monte Carlo becomes more problematic. The related problem of nesting will be

discussed in Section 7.4 below. Also, one should keep in mind that convergence

of the Monte Carlo method is an asymptotic result, and that there will always

be cases in which the asymptotics will only kick in at numbers of samples that are

beyond what is practically feasible. Some applications in finance do have a tendency

to produce such cases, both in option pricing (far out-of-the-money options) and in
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risk management (tail risk). In such cases we have bad matching between, on the one

hand, the probability density of the samples, and on the other hand, the behavior of

the relevant payoff function. A remedy may be found by the technique of importance

sampling, discussed in Section 7.2.2 below.

To illustrate the basic Monte Carlo method, suppose that we want to price a

European option given by an expiry date T and a payoff function F (x). To apply

pricing by the NDPF, first select a numéraire N with pricing function πN = πN (t, x).

The pricing function that we are looking for is given by

π(0, x) = πN (0, x)EQN
[ F (XT )

πN (T,XT )

∣∣∣X0 = x
]
. (7.4)

To approximate this, generate n trajectories of the stochastic differential equation

dX = (µX − σXλN )dt+ σXdW, X0 = x (7.5)

where λN is the drift adjustment corresponding to the measure QN , and W is

Brownian motion. Let x1
T , . . . , x

n
T be the values of XT found in the simulations;

then an approximation to (7.4) is

π(0, x) ' πN (0, x)
1

n

n∑
i=1

F (xiT )

πN (T, xiT )
. (7.6)

In the pricing kernel method, the formula from which we work is

π(0, x) = EP[KTF (XT ) | X0 = x]. (7.7)

To find an approximation by simulation, produce n trajectories of the system of

SDEs

dX = µXdt+ σXdW (7.8)

dK = −K(rdt+ λ>dW ). (7.9)

Let (x1
T , k

1
T ), . . . , (xnT , k

n
T ) be the pairs of values of XT and KT found in the simula-

tions. An approximation to (7.7) is then

π(0, x) ' 1

n

n∑
i=1

kiTF (xiT ). (7.10)

In some cases, it is possible to sample directly from the distribution of the

state variables at the time of maturity. For instance, this happens in the Black-

Scholes model where we know that the price of the underlying follows a lognormal

distribution and the parameters of this distribution are available. More typically
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however, the values of XT need to be computed on the basis of a time-stepping

method as described above, which means that the distribution of XT as given by

the model can only be approximated. In addition to the Monte Carlo error there

is a simulation error. To get convergence to the true value2 one needs to increase

the number of Monte Carlo samples and the number of time steps. An assessment

of the relative emphasis that should be placed on each of these can be made on

the basis of some assumptions concerning the effect on overall accuracy of increased

effort in each of the two directions. Analysis shows that the accuracy of expressions

of the form Ef(XT ) improves in proportion to the number of time steps when the

Euler method is used.3 Note that the discretization error creates a bias, whereas

the Monte Carlo error causes a variance. The two effects are considered jointly in

the root mean squared error (RMSE) which is defined by

RMSE =
√

bias2 + variance .

The bias is approximately equal to c1/N , where N is the number of time steps and

c1 is a constant, and the variance, as discussed above, is approximately equal to

c2/n where n is the number of trajectories generated and c2 is a constant. It would

be reasonable to take the product nN as a measure of the computational effort. For

a given level of the computational effort, say α, the RMSE is minimized by selecting

n and N such that

c2
1

N2
+
c2

n
→ min subject to nN = α.

Under the effort constraint, we have

RMSE2 =
c2

1n
2

α2
+
c2

n

which is minimized (treating n as a continuous variable for convenience) at

n = (1
2c2/c

2
1)

1
3α

2
3 . The corresponding value of the number of time steps N is

(1
2c2/c

2
1)−

1
3α

1
3 , and

RMSE = cα−
1
3

where c is a constant determined by c1 and c2. In other words, if a certain amount

of effort is already divided optimally between the number of trajectories and the

number of time steps, and one wants to get one extra decimal of accuracy, one

needs to increase the number of time steps by a factor of 10 and the number of

2The term “true” is to be interpreted here in the sense of the chosen model. The meaningfulness
of the computed value for practical purposes depends on the quality of that model.

3In more technical terms: the weak order of convergence of the Euler method is 1. The notion of
convergence used here is different from the notion used in Exc. 2.8.22; the latter notion corresponds
to what is called the strong order of convergence.
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trajectories by a factor of 100, so that the total computational effort required is

increased by a factor of one thousand.

Simply increasing the number of sample points in order to get better accuracy

may therefore not be a practically feasible solution. As an alternative, one may try

to reduce the variance of estimates. There are various ways of doing this; the ones

that are most frequently used in financial applications are discussed below.

7.2 Variance reduction

As discussed above, the Monte Carlo method can be slow depending on the required

level of accuracy and the nature of the option to be priced. Considerable savings

may be achieved if instead of EX we can compute EY where Y is a random vari-

able that has the same expectation as X but a smaller variance. More generally,

we may also change the probability measure and compute EQY instead of EPX,

where the measure Q and the random variable Y are such that EQY equals EPX

and EQ(Y − EQY )2 is less than EP (X − EPX)2. Such replacement strategies are

known as variance reduction methods. We discuss here some of the best-known vari-

ance reduction methods and the way that these may be applied in option pricing

applications.

7.2.1 Control variates

The general method of control variates proceeds as follows. Suppose that the quan-

tity that we want to compute is EX, where X is a random variable. Let Y be a

random variable on the same sample space with the following properties: (i) Y is

(preferably strongly) correlated to X, and (ii) we know EY . The variable Y is called

the “control variate”. Suppose, for the moment, that we also know the correlation

coefficient ρXY between X and Y and the variances σ2
X and σ2

Y . Define now a new

random variable Z by

Z = X − α(Y −m) (7.11)

where m = EY (supposed known) and α is any chosen constant. Then we have

EZ = EX, and so to compute EX we can also take samples from Z. While the

means of the random variables Z and X are the same, their variances may well be

different, since

varZ = varX + α2 varY − 2α cov(X,Y ).

If we choose

α =
cov(X,Y )

varY
= ρXY

σX
σY

(7.12)

then

varZ = (1− ρ2
XY ) varX (7.13)
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so that there can be a substantial reduction of the variance if the correlation between

X and Y is sufficiently strong. For instance, to get a reduction of the variance by a

factor of 4 (which halves the confidence interval; this can be achieved alternatively

by using four times as many sample points), one needs a correlation coefficient of
1
2

√
3 = 0.87.

The optimal coefficient α as given in (7.12) is expressed in terms of the statistical

quantities cov(X,Y ) and varY . Since the computation is based on the presumption

that the random variable X is sufficiently complicated so that its expectation has

to be found by a numerical method, it is unlikely in applications that any statistical

quantities related to X would be available analytically. It is possible that var(Y )

could be obtained by analytic methods, but the computation may be cumbersome.

Instead one can work with estimates of cov(X,Y ) and varY on the basis of their

sample equivalents. The Monte Carlo estimate

MCE =
1

n

n∑
i=1

(
xi − α(yi −m)

)
(7.14)

then depends on the samples (xi, yi) in a complicated way, so that the expression

(7.2) for the variance of this estimate is no longer valid. It can be shown, however,

that the error is small in large samples.4 To avoid the issue, one might estimate

cov(X,Y ) and varY from a pilot sample that is independent from the sample used

for Monte Carlo computation of the actual quantity of interest.

The method of control variates can be used in applications to option pricing for

instance when a given problem is a minor modification of one that is analytically

solvable. For instance, let European options C1 and C2 with the same time of expiry

T be defined by payoff functions F1(x) and F2(x), and suppose that an analytic

solution formula is known for the latter but not for the former. If the functions F1

and F2 are close to each other, it is reasonable to expect that the random variables

F1(XT ) and F2(XT ) are strongly correlated. Moreover, we know EQF2(XT ) from

the analytical pricing formula that is available for the second option. Consequently,

the method of control variates can be applied. In this way, explicit solution formulas

become useful even in situations where the assumptions that underlie the analytic

solution are not exactly satisfied.

Another way in which the control variate method can be applied in finance is the

following. Consider an option pricing problem formulated in terms of an equivalent

4In contrast, if the quantity m in (7.14) would be replaced by its sample equivalent 1
n

∑n
i=1 yi,

then the error that is made by using the formula (7.2) to determine the confidence interval is
large even in large samples. When the confidence interval is computed correctly, it turns out that
application of (7.14) with the sample equivalent of m does not produce any advantage with respect
to the “raw” Monte Carlo estimate. This is to be expected, since the strength of the control variate
method is based on the fact that some additional knowledge is used, namely the exact value of EY .
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martingale measure. From the general theory, we know that the relation

VT
NT
− V0

N0
=

∫ T

0
φ(t,Xt)

> d
Yt
Nt

(7.15)

holds, where V is a replicating portfolio for a given European option and φ = φ(t, x)

is the corresponding hedge strategy. The hedge strategy can be computed if the

pricing function is known, but of course here we are considering the situation where

the pricing function is what we want to compute, so we cannot assume that it is

available. However, there may be some approximate hedge available, perhaps from

an analytical solution of a related problem, or from some plausible rule of trading.

Let φ̃(t, x) denote the approximate hedge. We know that

EQ
∫ T

0
φ̃(t,Xt)

> d
Yt
Nt

= 0

because the relative price process Yt/Nt is a martingale under Q. Also, if the ap-

proximate hedge does reasonably well, the variance of the difference

F (XT )

NT
−
∫ T

0
φ̃(t,Xt)

> d
Yt
Nt

is small. (Indeed, if the hedge would be perfect, as in (7.15), the variance of the

difference would be zero.) Therefore, the integral can be used as a control variate. Of

course, in the actual implementation, the integral must be approximated by a finite

sum. Assuming that state trajectories are simulated on a time grid 0 = t0, . . . , tk =

T , we would estimate the option value (relative to the numéraire) by

C0

N0
' 1

n

 F (xiT )

πN (T, xiT )
−
k−1∑
j=1

φ̃(tj , x
i
tj )
>

[
πY (tj+1, x

i
tj+1)

πN (tj+1, xitj+1)
−
πY (tj , x

i
tj )

πN (tj , xitj )

] . (7.16)

The discussion above has concentrated on the use of a single control variate, but

one can also use several control variates together. Let these variables be denoted by

Y1, . . . , Yn, with EYi = mi for i = 1, . . . , n. The control variate estimate is

Z = X −
n∑
i=1

αi(Yi −mi). (7.17)

The value of the parameter vector α := [α1 · · ·αn]> that minimizes the variance of

the control variate estimate is found as the solution of the matrix-vector equation

ΣY Y α = ΣXY (7.18a)
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where the matrix ΣY Y and the vector ΣXY are defined by

(ΣY Y )ij = cov(Yi, Yj) (i = 1, . . . , n; j = 1, . . . , n) (7.18b)

(ΣXY )i = cov(X,Yi) (i = 1, . . . , n). (7.18c)

Alternatively, it may be noted that the variance of Z is is equal to the minimum of

E[(Z −α0)2] across all possible values of α0, so that the parameters αi that achieve

the minimal variance of Z can also be found from the solution of the optimization

problem

E
[
(X − α01−

∑n
i=1 αiYi)

2
]
→ min. (7.19)

This is a least-squares minimization problem. In particular, when the quantities

cov(X,Yi) are not available analytically, as is likely in applications, and the quan-

tities cov(Yi, Yj) are also not available or found too cumbersome to compute, then

estimates of the optimal parameter values αi can be obtained from a standard lin-

ear regression of sample outcomes of X against sample outcomes of the variables Yi

and a vector of constants. As in the case of a single control variate, a pilot sample

may be used for this purpose in order to avoid a possible source of bias in the esti-

mated confidence interval. The reduction of the variance will become larger when

X is approximated more accurately by a linear combination of control variates. For

instance, in a situation in which the variable of interest is generated by Brownian

motion on an interval [0, T ], one might use polynomials in WT , making use of the

fact that the moments of WT are known exactly.

7.2.2 Importance sampling

Under some adverse circumstances, the Monte Carlo method may perform very

badly, and, what is worse, may fail to indicate that it does not do well. To give a

somewhat artificial example of such a situation, consider the computation of Ef(Z)

when Z is the uniform distribution on the interval [0, 1] and f is the function defined

by

f(x) =

1
ε for 0 ≤ x ≤ ε

0 for ε < x ≤ 1.

where ε < 1 is a constant. The exact value of the expectation is 1. However, if

for instance ε is equal to 10−6 and the number of trials used for the Monte Carlo

computation is 10 000, the probability is quite high that all samples taken will

return the value 0. The result obtained from the computation is then simply 0, and

the estimated confidence interval only contains this point. In such a case, due to

the limited number of samples taken, the Monte Carlo method does not “see” the

small region of the outcome space where very large outcomes occur. As a result,
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the method “believes” that the function to be integrated is identically zero, and it

reports a completely wrong answer, not just in terms of the point estimate that is

produced but also in terms of the estimated confidence interval. For a given value

of ε, the correct answer will be still be retrieved asymptotically as predicted by the

theory, but the asymptotic properties may only take substantial effect at numbers

of trials that are not typically used in practice and that might be infeasible in terms

of computation time.

In a more general setting, assume that we are aiming to compute a quantity of

the form E[X] where X is a random variable that can only take a finite number of

values, say {x1, . . . , xn}. Then

EX =

n∑
i=1

xiP (X = xi). (7.20)

Suppose first that all xi’s are nonnegative. The expectation EX is then a sum

of nonnegative terms which are typically of different size. The accuracy by which

EX is computed depends mainly on how accurately the largest of those terms are

calculated. Each of the terms is computed as the product of the value xi and the

probability P (X = xi). It may happen that, for some value of i, the probability

P (X = xi) is very small, but nevertheless the term xiP (X = xi) contributes sub-

stantially to the sum in (7.20), because xi is relatively large. Since the probability

P (X = xi) is small, its value is not determined accurately in a Monte Carlo ex-

periment of practical size. The error in P (X = xi) is transmitted to the product

xiP (X = xi), and since this term is a substantial contributor to the expectation as

a whole, the accuracy of the computation of EX is affected badly. However, the

inaccuracy may not be reflected in the standard confidence interval of the Monte

Carlo procedure. The use of the confidence interval is based on convergence to nor-

mality as is guaranteed by the central limit theorem, but in a situation in which

the expectation of the random variable under consideration is determined to a large

extent by very high outcomes in rare events, the asymptotic regime may not have

set in yet, even at quite high sample sizes. If the computation of EX is inaccu-

rate for this reason, then the computation of std(X) is likely to be inaccurate as

well, so that, as seen in the example above, it may well happen that the computed

confidence interval is small whereas the error in the computed expectation is large.

Further aggravation of computational problems can arise when some of the xi’s

are positive and some are negative. If the sum of the positive terms is approximately

equal in absolute value to the sum of the negative terms, then the expectation

EX is close to zero, and even small inaccuracies in either the sum of the positive

terms or the sum of the negative terms can cause a large relative error in the

computed value of EX. Computational problems of this type can be extremely
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hard to solve accurately. Fortunately, in many applications in finance (in particular

option pricing) the integrand is nonnegative. Also, in cases where the computational

challenge is due to near-cancellation of positive and negative terms but not so much

to large outcomes in rare events, the confidence interval would be fairly reliable, so

that the user is appropriately alerted; note that, in situation where EX is small

relative to the expectations of the positive and negative parts of X, the variance is

largely determined by the second moment, which is an expectation of a nonnegative

random variable so that the near-cancellation problem does not arise.

Situations in which the price of a financial contract is determined to a large extent

by outcomes in rare cases occur quite frequently. One may think for instance of credit

insurance. Another typical example would be a far out-of-the-money put option,

i.e. a put with a strike that is much lower than the current value of the underlying.

In such cases, it is advisable to modify the sampling density in such a way that

more samples fall into the regions that are important for the computation of the

expectation, while making sure to correct for the change of density by introducing

an appropriate factor that multiplies the values. The technique that aims for such

modifications is called importance sampling. In general, it works as follows. Suppose

that the random variable X is obtained as a function of another random variable

(or random vector) that can be simulated; say X = f(Z). The expectation E[f(Z)]

can be written as an integral by making use of the notation

E[f(Z)] =

∫
f dP

where, for any measurable subset A of the outcome space Rn of Z, P (A) is the

probability of a sample from the distribution of Z to fall in A. Suppose now that

θ(z) is a positive function defined on the outcome space Rn of the vector random

variable Z, and moreover assume that θ satisfies E[θ(Z)] = 1. Then the prescription

Q(A) = P (A)E[θ(Z) | Z ∈ A]

defines a new probability measure Q; in fact, θ is the Radon-Nikodym derivative of

Q with respect to P . If the measure P has a density φ(z), then the density of Q is

θ(z)φ(z). More generally we can write dQ = θ dP . Consequently,∫
f dP =

∫
f

θ
θ dP =

∫
f

θ
dQ.

The expression on the right hand side can be computed by the Monte Carlo method

if we are able to generate samples of Z according to the probability measure Q.
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When samples z1, . . . , zn have been generated, the quantity

1

n

n∑
i=1

f(zi)

θ(zi)

is a point estimate of EP [f(Z)] = EQ[f(Z)/θ(Z)]. Dividing the values f(zi) by

θ(zi) provides compensation for the fact that the probability of drawing zi under

Q is θ(zi) times larger than the probability of drawing zi under P.5 An estimated

confidence interval can be obtained from the variance of the samples f(zi)/θ(zi),

i = 1 . . . , n. The exact value of the variance is

varQ(f(Z)/θ(Z)) = EQ
[
(f(Z)/θ(Z))2

]
−
(
EQ[f(Z)/θ(Z)]

)2
= EP

[
f2(Z)/θ(Z)

]
−
(
EP [f(Z)]

)2
. (7.21)

One sees from this that the change of measure together with the corresponding

compensation in the function values does not affect the expectation of f(Z), as

intended, but does affect the variance. Importance sampling is therefore not only

used as a way of avoiding the problems with relatively large outcomes in rare events

that have been described above; it can be applied as a general variance reduction

technique.

An important consideration in practice is that it must be feasible to sample

from the modified density of the variable Z. In applications, therefore usually first

the new sampling density ψ(z) is selected in such a way that sampling from this

density is feasible, and then the corresponding Radon-Nikodym derivative is defined

by θ(z) = ψ(z)/φ(z). Numerical considerations impose certain limits on the extent

to which densities can be modified; if the densities ψ and φ differ too much, then

for some outcomes zi the quotient ψ(zi)/φ(zi) may become hard to compute for

standard computational software.

As an illustration of importance sampling, consider a one-dimensional example.

Let us assume that we want to compute ζ = E[f(Z)] where f is the characteristic

function of the interval [2, 4], and Z is the standard normal variable. In other

words, we want to compute the probability of a standard normal variable to take a

value between 2 and 4. This quantity is readily available from tables of the normal

distribution (ζ = Φ(4)−Φ(2) = 0.0227) and even if that would not be so, the Monte

Carlo method would not be the best method to use for this particular computational

5This is a somewhat loose statement. More precisely, the probability under Q to draw a sample
in a ball of radius ε around zi is, up to first order in ε, equal to θ(zi) times the probability under
P to draw a sample in the same ball.
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problem; the example is just meant to be illustrative. We have

ζ =
1√
2π

∫ ∞
−∞

12≤x≤4 e
− 1

2
x2
dx.

The standard normal distribution generate most of its outcomes outside the interval

[2, 4]. There would be a better match between the function and the distribution if we

would sample from the normal distribution N(3, 1); moreover, this is a distribution

from which we can indeed easily draw samples. The density of the distribution

N(3, 1) is
1√
2π

e−
1
2

(x−3)2
.

Therefore, let us define

θ(x) =

1√
2π
e−

1
2

(x−3)2

1√
2π
e−

1
2
x2

= e3x− 9
2 .

We can write

ζ =
1√
2π

∫ ∞
−∞

12≤x≤4 e
−3x+ 9

2 e−
1
2

(x−3)2
dx.

Therefore, an alternative way to compute the quantity of interest is to generate

samples zi from the N(3, 1) distribution and to compute the corresponding values

12≤zi≤4 e
−3zi+

9
2 .

Taking the average of these values leads to an estimate for ζ. The variance per

sample according to the original distribution is

1√
2π

∫ ∞
−∞

(
12≤x≤4

)2
e−

1
2
x2
dx− ζ2 = ζ − ζ2 = 0.0222.

To compute the exact variance of each sample obtained from the distribution N(3, 1)

as described above, note that

1√
2π

∫ ∞
−∞

(
12≤x≤4 e

−3x+ 9
2
)2
e−

1
2

(x−3)2
dx

=
1√
2π

∫ ∞
−∞

12≤x≤4 e
−6x+9 e−

1
2

(x−3)2
dx

=
1√
2π

∫ ∞
−∞

12≤x≤4 e
− 1

2
(x2−3x+ 9

2
) dx

=
e9

√
2π

∫ ∞
−∞

12≤x≤4 e
− 1

2
(x+3)2

dx = e9(Φ(7)− Φ(5)).
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It follows that the modified variance is

e9(Φ(7)− Φ(5))− ζ2 = 0.0018.

By application of importance sampling, the width of the confidence interval ob-

tained from a given number of Monte Carlo is samples is reduced by the factor√
0.0018/0.0222 = 0.285. Approximately the same reduction would be achieved by

a 12-fold increase of the number of samples; so it can be said that the use of impor-

tance sampling in this case reduces computation time (for a given level of accuracy)

by a factor of 12.

For the application of the importance sampling method, one has to be able to

draw samples from the new distribution Q, and one needs to be able to compute

the value of the Radon-Nikodym derivative dQ/dP at every point in the outcome

space. In the context of SDEs, Girsanov’s theorem (Thm. 2.7.1) can be put to good

use. The new measure is effectively defined by a change of drift, and the equation

(2.92) keeps track of the RN derivative. If the drift is changed by a constant, then

the SDE (2.92) does not need to be simulated, because in that case we are dealing

with a geometric Brownian motion and the required value can be expressed directly

in terms of the value WT of the driving Brownian motion at time T .

7.2.3 Antithetic variables

If the random vector Z follows a multivariate normal distribution with zero mean,

then the distribution of Z is the same as the distribution of −Z. It follows that, when

f is any function such that E[f(Z)] is defined, the equality E[f(Z)] = E[f(−Z)]

holds. When z1, . . . , zn are independent draws from the distribution of Z, we may

therefore use for instance

1

2n

n∑
i=1

f(zi) +
1

2n

n∑
i=1

f(−zi) (7.22)

as an estimate of E[f(Z)]. The estimate is unbiased. To determine its variance,

look at the above expression as a realization of the random variable

ζ̂ :=
1

n

n∑
i=1

1
2(f(Zi) + f(−Zi))

in which the Zi’s are independent random variables all having the same distribution

as Z. Define X̄i = 1
2(f(Zi)+f(−Zi)); then the X̄i’s are independent and identically

distributed, so that var(ζ̂) = 1
n var(X̄), where X̄ denotes a random variable with
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the same distribution as all X̄i’s. Moreover we have

var(X̄) = 1
4

(
var(f(Z)) + 2 cov(f(Z), f(−Z)) + var(f(−Z))

)
= 1

2

(
var(f(Z)) + cov(f(Z), f(−Z))

)
because var(f(Z)) = var(f(−Z)). Overall, we find

var(ζ̂) =
1

2n

(
var(f(Z)) + cov(f(Z), f(−Z))

)
. (7.23)

If we assume that, in computing a value f(z), the lion’s part of the work is in the

application of the function f rather than in obtaining z as a draw from the random

variable Z, and if we also assume that no shortcuts are available which make it easy

to compute f(−z) once f(z) has been computed, then the amount of computational

effort in obtaining the values f(z1), . . . , f(zn), f(−z1), . . . , f(−zn) is about the same

as the effort in obtaining 2n values f(z1), . . . , f(z2n). The variance in (7.23) should

then be compared with the variance that would be obtained from 2n replications,

namely 1
2n var(f(Z)). It follows that the estimate (7.22) is an improvement on the

“raw” Monte Carlo estimate when f(Z) and f(−Z) are negatively correlated. The

improvement can be substantial if there is a strong negative correlation. The method

described here is called the method of antithetic variables.

7.3 Price sensitivities (the Greeks)

The term “Greek” is used in finance to refer to derivatives (in the mathematical

sense of the word). In particular, derivatives of option prices with respect to vari-

ous parameters/variables are used. The term “Greeks” covers both first-order and

higher-order derivatives. Examples are:

delta
∂C

∂S
gamma

∂2C

∂S2
vega

∂C

∂σ

theta
∂C

∂t
vanna

∂2C

∂S∂σ
vomma

∂2C

∂σ2

Greeks are indicators of (local) sensitivity of an option price or the result of a

portfolio strategy with respect to a given variable or parameter. This information

is important for the computation of hedging strategies (for instance delta hedging),

but also for risk management, optimization, and robustness analysis.

The most common way of computing sensitivity of a quantity computed by

Monte Carlo is the bump and reprice method, also known as the finite-difference

method. The problem is to compute

d

dθ
E[X(θ)]
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where θ is a parameter of interest. Let the standard MC estimate based on n samples

be denoted by X̄n. The one-sided finite-difference estimate of the derivative is

X̄n(θ + ∆θ)− X̄n(θ)

∆θ

where ∆θ is a small step. An alternative is the two-sided (a.k.a. central-difference)

estimate:
X̄n(θ + ∆θ)− X̄n(θ −∆θ)

2∆θ
.

This requires an extra set of simulations but is often more accurate, since the Taylor

series expansion shows that

f(x+ ∆x)− f(x)

∆x
= f ′(x) +O

(
∆x
)

f(x+ ∆x)− f(x−∆x)

2∆x
= f ′(x) +O

(
(∆x)2

)
.

The same observation was used in the construction of finite-difference methods of

PDEs in Chapter 6. Both the one-sided and the two-sided estimator incorporate a

bias which is due to the fact that we are using a finite-difference approximation. To

determine the variance, assume first that estimates X̄n(θ), X̄n(θ+h), and X̄n(θ−h)

are obtained from independent simulations. The variance of X(θ + ∆θ) is in cases

of interest close to the variance of X(θ) when ∆θ is small, so that we can write

var
(
(X̄n(θ + h)− X̄n(θ))/h

)
' 2

nh2
var
(
X(θ)

)
.

A similar expression holds for the two-sided difference. To have a small variance for

the estimator, the quantity nh2 must be large; in particular is is not advisable to

take a small step h when the number of samples n is moderate. For more specific

advice, consider what is needed to minimize the RMSE. In the case of the one-sided

estimate, minimization of the RMSE requires that the step size h for a given number

of simulations n is selected such that

c1h
2 +

c2

nh2
→ min.

This leads to h ∝ n−1/4, and

RMSE = O
(
n−1/4

)
for the one-sided estimate with independent sampling. In the case of the two-sided
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estimate with independent sampling, we get

RMSE = O
(
n−1/3

)
.

This is still a rather slow convergence.

It is not a great restriction of generality to assume that the parameter-dependent

quantity of interest X(θ) can be written in the form

X(θ) = f(Z, θ) (7.24)

where f is a given function and Z is an underlying (possibly multivariate) random

variable. Indeed, the variables that we study by means of simulations are always

generated in this way.6 It is then possible to use common random numbers in the

simulation of X(θ), X(θ + ∆θ), and X(θ − ∆θ); this means that samples of X(θ)

and of X(θ ± ∆θ) are all generated from the same set of samples for Z. Corre-

spondingly, the random variables X(θ) and X(θ±∆θ) are not independent, so that

the expressions for the variance of the one-sided and the two-sided finite difference

are different from the corresponding expressions in the case of independence. If the

function f(z, θ) in (7.24) is differentiable with respect to the parameter θ for all

values of z, then

X(θ + ∆θ)−X(θ) = f(Z, θ + ∆θ)− f(Z, θ)
)

=
∂f

∂θ
(Z, θ)∆θ + o

(
∆θ
)
. (7.25)

This means that, for small ∆θ, the variance of the one-sided finite difference

(X(θ + ∆θ)−X(θ))/∆θ is approximately equal to the variance of the random vari-

able (∂f/∂θ)(Z, θ). The same holds for the variance of the two-sided difference. As-

suming that the variance of (∂f/∂θ)(Z, θ) is finite, it follows that the mean square

errors for the one-sided and the two-sided difference respectively are of the form

MSE1 = c1∆θ2 +
c2

n
, MSE2 = c3∆θ4 +

c4

n
. (7.26)

The bias is purely controlled by the step size ∆θ and the variance by the number of

samples n. So we can give ∆θ an arbitrarily small value, and the convergence rate

is O(n−1/2) just as in the case of estimation of the value itself.

The analysis above is based on the assumption that the function f(z, θ) is dif-

ferentiable with respect to θ for all z. In applications, this assumption is frequently

not satisfied, due to the fact that payoff function often have kinks. For instance,

suppose that we are interested in applying a Monte Carlo method to find the vega

(sensitivity with respect to volatility) of a call option in the Black-Scholes model.

The time-0 value of the option can be written as e−rTE[f(Z, σ)] where the function

6Time discretization with a fixed time step is taken for granted here.
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f is given by

f(z, σ) = max
(
S0 exp

(
(r − 1

2σ
2)T + σ

√
T z
)
−K, 0

)
. (7.27)

This function is not differentiable as a function of the parameter σ at the point z for

which the two arguments of the max operator are equal to each other. In terms of

the analysis above, this means that, for every choice of ∆θ, there will be outcomes

of Z such that the expression (7.25) is not valid due to lack of differentiability of

the function f as a function of the parameter θ on the interval from θ to θ + ∆θ.

However, the probability of these outcomes is approximately proportional to ∆θ,

and the difference X(θ+∆θ)−X(θ) is in these cases still of order O(∆θ) due to the

fact that the function f in (7.27) is Lipschitz7 continuous. The conclusion (7.26) is

therefore still valid.

The application of the bump-and-reprice method to the case of the computation

of the vega of a call option in the BS model is shown in Code Example 7.1. While in

this case simulation could be based on the known solution of the geometric Brownian

motion, such a solution might not be available in other models, and so the code uses

time stepping instead. To verify that the bump-and-reprice method indeed leads to

the correct answer, a comparison is made with the analytic formula for the vega of

a call option in the BS model, which is available from (3.86).

It was argued above that the “bump and reprice” method for computing the

sensitivity of option values can be used with arbitrarily small step size ∆θ when

the payoff function is Lipschitz continuous. In cases in which the payoff function is

discontinuous, however, the relations (7.26) cannot be maintained. For instance, if

one wants to compute the vega of a digital option by the bump-and-reprice method,

then one has to face the fact that the variance of X(θ + ∆θ) − X(θ) is O(∆θ)

rather than O(∆θ2), since there is an O(∆θ) probability of Z falling into the region

where the option payoff is 0 according to the parameter value θ and 1 according to

the parameter value θ + ∆θ, or vice versa. As a consequence, the variance of the

difference quotient (X(θ + ∆θ) − X(θ))/∆θ is O(∆θ−1), so that the mean square

error is of the form

MSE = c1∆θ2 +
c2

n∆θ
.

In this case, the mean square error will be badly affected if the step ∆θ is made too

small. Instead, to optimize the speed of convergence one should take ∆θ ∝ n−1/3,

which leads to the convergence rate n−1/3 for the RMSE. This can be improved

to n−2/5 by using the two-sided difference, but the fact remains that the step ∆θ

cannot be made arbitrarily small.

7Rudolf Lipschitz (1832–1903), German mathematician. A real-valued function is said to be
Lipschitz continuous if there exists a constant c such that |f(x)− f(y)| ≤ c|x− y| for all x and y.
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r = 0.03; sigma = 0.20; S0 = 100; K = 100; T = 1;

h = 0.01; nsteps = 50; nsamples = 10^5; dt = T/nsteps;

S=S0; Sb = S0; % initialization

for i = 1:nsteps

dW = sqrt(dt)*randn(nsamples,1);

dS = r*S*dt + sigma*S.*dW;

S = S + dS;

dSb = r*Sb*dt + (sigma+h)*Sb.*dW; % bumped version

Sb = Sb + dSb;

end

C = exp(-r*T)*max(S-K,0);

Cb = exp(-r*T)*max(Sb-K,0);

vega_est = mean((Cb-C)/h);

vega_std = std((Cb-C)/h)/sqrt(nsamples);

disp([’vega bump&repr: ’ num2str(vega_est) ...

’ +/- ’ num2str(1.96*vega_std)])

% also compute exact vega in BS model for comparison

d1 = (log(S0/K)+(r+0.5*sigma^2)*T)/(sigma*sqrt(T));

vega_ex = S0*normpdf(d1)*sqrt(T);

disp([’vega exact: ’ num2str(vega_ex)])

Code Example 7.1: “Bump and reprice” method for computation of sensitivity of the
option price with respect to the volatility of the underlying asset. The size of the bump is
indicated by h.

In fact, in the case of the digital option it can be seen directly that making ∆θ

very small is not a good idea. In a finite sample, there is (with probability 1) a

positive minimum bump size that is required to move a sample outcome from 0 to 1

or vice versa. If the step ∆θ is taken smaller than this minimum, then the difference

between the option payoffs and their bumped versions is 0 in all sample points, so

that the resulting estimate for the vega would be 0 as well.8 This is not the correct

answer.

In cases in which it is possible to make the step size ∆θ arbitrarily small, the

fact that this is so suggests that it actually may be feasible to take the limit. In

other words, the derivative of E[f(Z, θ)] might computed on basis of the formula

d

dθ
E[f(Z, θ)] = E

[∂f
∂θ

(Z, θ)
]
. (7.28)

Looking at the expectation as an integral, this interchange of differentiation and

expectation can be viewed as an application of the Leibniz rule for differentiation

of integrals. The right hand side in (7.28) can be computed by Monte Carlo, if one

has a way of obtaining samples from (∂f/∂θ)(Z, θ). In applications, the variable of

interest (such as a payoff) is often constructed as the result of applying a function

to a stochastic variable, say XT (θ), which itself is constructed on the basis of a

8Moreover, there would be no indication from the confidence interval that the answer is wrong,
because the estimated standard deviation is 0 as well.
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---

DS = 0; % S0 does not depend on sigma

---

dDS = r*DS*dt + S.*dW + sigma*DS.*dW; % diff dS wrt sigma

DS = DS + dDS;

---

DC = exp(-r*T)*(S>K).*DS; % differentiate payoff wrt sigma

vega_est = mean(DC);

vega_std = std(DC)/sqrt(nsamples);

---

Code Example 7.2: Modification of code in Code Example 7.1 to implement the pathwise
method for computation of sensitivity of the option price with respect to the volatility of
the underlying asset. The variables Sb and Cb are no longer needed.

sequence of steps of the form

Xtk+1
(θ) = Xtk(θ) + µX(t,Xtk(θ), θ) ∆t+ σX(t,Xtk(θ), θ)

√
∆t Zk (7.29)

starting from an initial condition X0(θ); the functions µX = µX(t, x, θ) and

σX = σX(t, x, θ) are given, and the variables Zk are drawn independently from

the standard normal distribution. Taking partial derivative with respect to θ in the

above, one finds (writing DXt to indicate the derivative with respect to θ)

DXtk+1
(θ) = DXtk(θ) +

[ ∂µX
∂x

(t,Xtk(θ), θ)DXt(θ) +
∂µX
∂θ

(t,Xtk(θ), θ)
]

∆t

+
[ ∂σX
∂x

(t,Xtk(θ), θ)DXt(θ) +
∂σX
∂θ

(t,Xtk(θ), θ)
]
Zk. (7.30)

Starting the iteration from DX0 = (∂X0/∂θ)(θ), one finds in this way simulated

values of DXT . The required partial derivatives of the model functions µX and σX

should be available analytically; this is frequently the case in practice. If also the par-

tial derivative of the payoff function with respect to the state variables can be com-

puted, one finds in this way simulated values of the random variable (∂f/∂θ)(Z, θ)

which appears at the right hand side of (7.28). The estimate of the sensitivity with

respect to θ is subsequently obtained by computing the average of these values. At

the expense of having to compute partial derivatives of the model functions and the

payoff function, this eliminates the bias that is inherent in finite differencing. The

technique shown above can be described as “pathwise differentiation”; therefore,

the method that is based on this is called the pathwise method. Code Example 7.2

shows an implementation of the pathwise method, in the form of modifications with

respect to Code Example 7.1.

In cases in which the payoff function is discontinuous, the pathwise method is

likely to fail. Indeed, in the case of the vega of a digital option, the Leibniz rule does
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not apply since (∂f/∂σ)(Z, σ) = 0 with probability 1, so that E[(∂f/∂σ)(Z, σ)] = 0,

whereas the partial derivative of E[f(Z, σ)] with respect to σ is nonzero. This is

in line with the earlier observation concerning what happens when the step size in

the bump-and-reprice method, as applied to computing the sensitivity of a digital

option, is made too small.

An alternative method for computing sensitivities is available in cases where

the payoff depends on a random variable, say ST , whose density function is known

explicitly. In many cases, the density function is a smooth function of parameters

of interest, which gives reason to be optimistic concerning the validity of the inter-

change of differentiation and integration in the expressions below, even when the

payoff function F is not smooth:

d

dθ
E[X(θ)] =

d

dθ

∫
F (s) g(s, θ) ds =

∫
F (s)

∂g

∂θ
(s, θ) ds

=

∫
F (s)

(∂g/∂θ)(s, θ)

g(s, θ)
g(s, θ) ds = E

[
F (ST )

(∂g/∂θ)(ST , θ)

g(S, θ)

]

= E

[
F (ST )

∂ log g

∂θ
(ST , θ)

]
. (7.31)

The partial derivative of the log density with respect to the parameter of interest is

called the score function in statistics. If this can be computed, then (7.31) offers a

possible way of computing the sensitivity by Monte Carlo sampling. This method

is called the likelihood ratio method or the score function method.

As an example, consider (again) the Black-Scholes model. The distribution of

ST is given by

ST = S0 exp
(
(r − 1

2σ
2)T + σ

√
T Z

)
, Z ∼ N(0, 1). (7.32)

The density (say, ψ(s)) of ST can be found by computing P (ST ≤ s) for given s ∈ R
and differentiating with respect to s:

ψ(s) =
1

sσ
√
T
φ

(
log(s/S0)− (r − 1

2σ
2)T

σ
√
T

)
.

Take for instance S0 as the parameter of interest. We have

log ψ(s, S0) = −
(

log(s/S0)− (r − 1
2σ

2)T
)2

2σ2T
+ · · ·
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where the dots indicate terms that do not depend on S0. The score function is

∂

∂S0
log ψ(s, S0) =

log(s/S0)− (r − 1
2σ

2)T

σ2T S0
.

The delta of an option with payoff F (ST ) can now be computed using

∂

∂S0
E[F (ST )] = E

[
F (ST )

log(ST /S0)− (r − 1
2σ

2)T

σ2T S0

]
= E

[
F (ST )

Z

σ
√
T S0

]

where Z is as in (7.32).

The discussion above has concentrated on the calculation of first-order deriva-

tives. There is also interest in second-order derivatives, however, such as gamma

(the second derivative of the option price with respect to the underlying). The

typical finite-difference estimator is

X̄n(θ + ∆θ)− 2X̄n(θ) + X̄n(θ −∆θ)

∆θ2
.

The bias is O(∆θ2) as indicated by (6.7). In the same way as discussed in the

case of first-order derivatives, the variance of the second-order difference quotient

tends to a finite limit when X(θ) = f(Z, θ) and f is sufficiently smooth. Since

we are dealing with second derivatives here, the smoothness requirements on f are

more strict and often not met in practice. In case the variance of the second-order

difference quotient is O(∆θ), we obtain

MSE = c1∆θ4 +
c2

n∆θ
.

To optimize the convergence speed, one should take ∆θ ∝ n−1/5; the RMSE then

converges at rate O
(
n−2/5

)
. In the likelihood ratio method, the smoothness of the

density function as a function of its parameters may make it possible to differentiate

twice under the integral sign. As noted above, the applicability of this method

depends on the availability of the density of the underlying at the time of expiry in

explicit form.

7.4 Least-squares Monte Carlo

In applications of the Monte Carlo method within a continuous-time setting, the

typical situation is that the value of the variable of interest at a given future time

T can be computed as a function of the state variables at time T . Values of the

state variables at time T can be simulated by means of a time-stepping procedure

on the basis of the stochastic differential equations which are specified in the model

that is being used. For instance, to price a European option within the context of
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a stochastic volatility model, one would use the model equations to generate joint

scenarios for the price of the underlying and the volatility to produce a large sample

of possible values of the underlying at the time of expiry T , and then the given

option payoff function would be used to compute corresponding option payoffs; the

final estimate is subsequently obtained by averaging and discounting. The step

from values of the state variables to option payoffs is made by means of the payoff

function, which is typically given in an analytic form such as max(ST − K, 0) for

a call option. However, in practice situations frequently arise in which the values

of the variable of interest cannot be computed easily from the corresponding values

of the state variables, but instead must themselves be obtained by a Monte Carlo

procedure. We then speak of nested Monte Carlo. Here are two examples.

Example 7.4.1 To meet regulatory requirements, an insurance company wants to

compute the 99.5% quantile of the distribution of losses on its portfolio on a one-

year horizon. Part of the portfolio consists of life insurance policies which include

profit sharing optionalities that are too complicated to be valued analytically. The

company can compute an approximation of the required quantile by a two-step

procedure, as follows. First, generate a large number of scenarios under the real-

world measure to find a set of possible values for relevant state variables one year

from now. Then, for each of the possible values of the state vector that have been

generated in the first step, start a new Monte Carlo simulation (under a suitable

risk-adjusted measure) to determine the corresponding value of the products in the

portfolio.

Example 7.4.2 A Bermudan put option expires in two years and has three early

exercise opportunities, at six months, one year, and eighteen months from now.

These points in time will be denoted by t1, t2, and t3, and the final time of expiry

will be denoted by T . To value the option, we work backwards in time. At the

time of expiry, if the option has not been exercised before, its value is given by the

standard formula CT = max(K − ST , 0), where CT represents the option value at

time T , ST is the value of the underlying at time T , and K is the strike. At time

t3, if the option has not been exercised before, we must make a decision whether or

not to exercise. The option should be exercised if the value of immediate exercise,

which is max(K−St3), is larger than the value of the option when it is not exercised

(the “continuation value”). At time t3, the continuation value is equal to the value

of a standard European put option that matures at time T , since there are no

early exercise opportunities anymore after time t3. Under the assumptions that the

underlying follows a geometric Brownian motion and that interest rates are constant,

the continuation value is therefore given by the Black-Scholes formula. Since that
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value is always positive, we can write

Ct3 = max
(
K − St3 ,CV3(St3)

)
(7.33)

where CV3 denotes the continuation value at time t3, which depends on St3 . Likewise

we have

Ct2 = max
(
K − St2 ,CV2(St2)

)
where CV2(St2) is the value of the option that matures at time t3 with payoff

given by the formula (7.33). Since the payoff formula is quite complicated, there

is no explicit formula; instead, a Monte Carlo method can be used to compute an

approximation to the continuation value at time t2 for each given value of St2 . The

Monte Carlo method can be used as well to compute the continuation value at time

t1; however, for each scenario starting at time t1, a new set of scenarios would need

to be started at time t2 in order to find the payoff value at time t1 by the standard

MC method. Continuing in this way, application of the regular MC method at to

determine the contract’s value at the time of initiation would mean to create a large

number of scenarios from the given initial value S0 which would each branch into

a new set of scenarios at time t1, followed by another branching at time t2. If for

instance 1000 scenarios are viewed as necessary to get reasonable accurate Monte

Carlo values, then the total number of scenarios generated in this way would be 109.

If there would be an exercise opportunity every month instead of every six months,

as is quite standard, then the number of scenarios would swell to 1069, rendering

the proposed computational method totally infeasible.

The computational problems that arise for standard Monte Carlo in the two

examples are due to nesting. In situations as in the second example, in which there

is only one state variable, an effective solution to the problem is provided by the so

called finite difference method of Chapter 6. However, this method quickly becomes

more involved when the number of state variables increases, as would happen for

instance in models with variable interest rates. A popular way to handle nested

problems involving several state variables is the Least-Squares Monte Carlo (LSMC)

method. The basic idea of the method can be described as follows.

Consider the problem of finding a conditional expectation E[f(X1) | X0 = x],

where f is a given continuous function, and X1 is a random vector that is generated

from X0 for instance by means of a discretized stochastic differential equation, so

that samples from the distribution of X1 can be generated when X0 is given. The

conditional expectation depends on the input vector x, so that we are actually

looking for a function of x. One way to find an approximation to that function is

to construct a collection of grid points x1, . . . , xN in the vector space in which X0

takes its values, and to compute for each of these points an approximation ŷj to the
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corresponding value of the conditional expectation yj = E[f(X1) | X0 = xj ]. An

explicit approximate expression for the conditional expectation as a function of the

vector variable x can be obtained in the form

E[f(X1) | X0 = x] ≈
M∑
k=1

wkFk(x)

where the functions F1(x), . . . , FM (x) are pre-selected basis functions, and where

the weights w1, . . . , wM are found by a regression procedure:

minimize
N∑
j=1

‖ŷj −
∑M

k=1wkF (xj)‖2.

Whether a good approximation is obtained in this way depends on the choice

of the grid points x1, . . . , xN as well as on the choice of the basis functions

F1(x), . . . , FM (x). Also, there needs to be a proper balance between the number

N of grid points, the number M of basis functions, and the number of Monte Carlo

runs that are used at each grid point xj to determine the approximate value ŷj .

The grid points should provide a representative sampling of the relevant domain;

a random sample (i.e. Monte Carlo) may be good enough in some cases, but in

other cases a hand-picked set may be preferred. Popular choices for basis functions

include multivariate polynomials and exponentially weighted versions of these. If

some rough information is available about the shape of the conditional expectation

function, this may be used to guide the choice of the basis functions.

The term “least-squares Monte Carlo” (LSMC) comes from the fact that the

function that approximates the conditional expectation is obtained from a least-

squares optimization problem. The idea behind the method is that, by restricting

the solution to be a linear combination of given basis functions, it is possible to

tolerate a fairly low level of accuracy in the approximate values ŷj , since neighboring

points will correct each other. This suggests that a fairly good approximation of the

conditional expectation may be obtained, even when the number of Monte Carlo

runs at each individual grid point is not high.

In situations as in Example 7.4.2, the computation of conditional expectations

is applied in a number of successive iteration steps. One then needs to watch out

for possible build-up of errors. In the specific case of the example, the approximate

option value at a given time in a given state is computed as the maximum of two

quantities, namely the value of immediate exercise and the continuation value. While

the former is computed precisely, the latter is computed with an error. When the two

values are close to each other (i.e. near the exercise boundary), it may happen that

the exercise value is erroneously taken to be the largest because the continuation

value is underestimated, or vice versa the exercise value is taken to be the smallest
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only because the continuation value is overestimated. While these errors are about

equally likely to occur, the effects of the two errors are not symmetric. In the case

of an overestimate, the full amount of the error will be transferred to the computed

option value. When the continuation value is underestimated, however, the error is

truncated, since in this case the option value is taken to be the value of immediate

exercise, not the continuation value. Therefore there is an upward effect, which

after a number of iteration steps may give rise to a substantial error. The issue is

in particular important when there are many stages in which the maximum of the

value of immediate exercise and the continuation value needs to be computed, such

as when an American option is approximated by a Bermudan option with many

early-exercise opportunities.

The upward effect can be suppressed by looking at the computational procedure

as a way of computing an exercise strategy, rather than as a way of computing an

approximate option value directly. Given an exercise strategy (that is, a specifica-

tion, for each exercise opportunity date, of the exercise region, i.e., the set of states

at which the option will be exercised), one can use standard Monte Carlo in order

to compute the option value that is obtained from this exercise strategy. This value

is a lower bound for the true Bermudan option value, because the chosen exercise

strategy may not be the optimal one.

A basic version of the LSMC method for valuation of a Bermudan put option

is shown in Code Example (7.3). Five exercise opportunity dates are assumed. In

the case of the standard Black-Scholes model that is used in the example, LSMC

is in fact not the best method for valuation of a Bermudan put, so the BS model

is used in the example just for purposes of illustration. The basis function used

in the example (1, S, S2, and S3) are also chosen just for purposes of illustration.

The method starts by generating a set of scenarios starting from the initial value

of the underlying S0. Simulation takes place under the risk-neutral measure. The

points visited by these scenarios at the exercise opportunity dates are stored in a

matrix. For each exercise opportunity date, one obtains in this way a (random) grid.

Because the grid points are obtained from scenarios, there is for each grid point j at

time tk a corresponding grid point j at time tk+1, namely the one that is obtained

from the same scenario.9 After the grid points have been created in a forward pass,

the LSMC method proceeds to a backward pass. As a preliminary estimate of the

continuation value in grid point j at time tk, the value of the option is taken in

grid point j at time tk+1, discounted from time tk+1 to time tk. This can be viewed

as a Monte Carlo estimate with sample size 1. Regression on a prespecified set of

9Another effect of generating grid points at the successive exercise opportunity dates from sce-
narios is that the grid is more concentrated around the initial value S0 for low values of the discrete
time index k, and spreads out more widely later; this is reminiscent of tree methods as discussed
in Section 6.7.
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T = 1; sigma = 0.2; S0 = 100; K = 100; r = 0.04;

EV = @(x) max(K-x,0); % value of immediate exercise

dt = 0.2; N = T/dt; M = 1000; Sm = zeros(M,N);

BF = @(x) [ones(size(x)) x x.̂ 2 x.̂ 3]; % basis functions

% --- forward pass ---

S = S0; % initialization

for k = 1:N

Z = randn(M,1);

S = S.*exp((r-0.5*sigma^2)*dt+sigma*sqrt(dt)*Z); % or Euler

Sm(:,k) = S; % store the sample points

end

% --- backward pass ---

V = EV(S); % initialization

for k = N-1:-1:1 % counting down

C = exp(-r*dt)*V; % simple estimate of continuation value

S = Sm(:,k); % sample points at stage k

w = BF(S)\C; % regress C on BF(S)

CV = @(x) BF(x)*w; % continuation value as a function

V = max(EV(S),CV(S)); % estimated option values

end

% --- final step ---

C0 = exp(-r*dt)*mean(V);

Ce = max(EV(S0),C0);

disp([’LSMC estimate: ’ num2str(Ce)])

Code Example 7.3: First version of LSMC method for the valuation of a Bermudan
put option. The sample points are generated from the analytic solution of the geometric
Brownian motion, but this might also have been done by an Euler method. The chosen
basis functions are 1, x, x2, and x3.

basis functions is subsequently used to allow the values at neighboring grid points to

correct each other. The actual estimate of the continuation value in grid point j at

time tk is then obtained as the value at this grid point of the interpolation function

obtained from the regression. The estimated option value is obtained by taking the

maximum of the estimated continuation value and the value of immediate exercise.

The backward pass ends at time t1. Since there are no exercise opportunities between

time 0 and time t1, it is straightforward to compute the estimated option value at

time 0 from the extimated option values at time t1.

This basic version of the LSMC method is sensitive to the upward drift that

has been discussed above. To counteract the effect, one can use the fact that the

backward pass not only delivers estimated option values, but also estimated exercise

regions. In the course of the procedure, for each time index k, the grid points at

time tk have been labeled as either “exercise” or “do not exercise”. An exercise

region could be constructed from this; for instance, the exercise region at time tk

could be defined as the set of all points in the state space for which the most nearby

grid point is an exercise point. An unbiased estimate of the value of the option with

this exercise region, which is a lower bound for the Bermudan option value, could
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---

Tx = N*ones(M,1); Sx = S; % initialize exercise data

---

jx = EV(S) > CV(S); % exercise indices

Tx(jx) = k; Sx(jx) = Sm(jx,k); % update exercise data

---

C0 = mean(exp(-Tx*r*dt).*EV(Sx)); % discount wrt exercise time

---

Code Example 7.4: Modification of Code Example 7.3 in which the approximate option
value at time 0 is computed from an exercise strategy. After completion of the backward
pass, the j-th entry of the vector Tx contains the index of the exercise time in scenario j,
and the j-th entry of Sx contains the value of the underlying at the exercise time. Therefore
the j-th entry of EV(Sx) is the option payoff at the time of exercise in the j-th scenario. As
an alternative to constructing Sx by initialization and updating, it is also possible to recover
Sx after completion of the backward pass from the vector Tx and the forward pass data in
the matrix Sm by the command Sx = Sm(sub2ind(size(Sm),(1:M)’,Tx)).

then obtained by generating a fresh set of Monte Carlo scenarios. It is attractive

however to use the set from the original forward pass of the method, since these

scenarios pass through points that have already been labeled as exercise points or

non-exercise points.10 This method was proposed by Jacques Carrière in 1996.11 An

implementation is shown in Code Example 7.4, in the form of modifications with

respect to the first version of the LSMC method. Two new vectors are introduced

which keep track, for each scenario, at which time exercise takes place within this

scenario, and what the value of the underlying is at that time. These vectors are

initialized before the start of the backward pass and are updated within the loop.

The continuation value at time 0 is then computed as the expected result12 of the

exercise strategy, with discounting that takes the time into account at which exercise

takes place.

The idea of computing an approximate option value from an exercise strategy

can also be applied within the recursion of the backward pass, rather than only

at the end of it. This version was proposed by Francis Longstaff and Eduardo

Schwartz in 2001.13 The required modifications with respect to Code Example 7.3

are shown in Code Example 7.5. The expected result of the exercise strategy at

a given sample point in scenario j is computed only from that scenario (it can be

considered as a Monte Carlo estimate with sample size 1), so no averages need to

10The unbiasedness of the resulting estimate may be compromised in this way. Since the exercise
strategy is tested on the same scenarios that have been used for its design, the results are likely to
be too optimistic; in other words, an upward bias is expected.

11J.F. Carrière, “Valuation of the early-exercise price for options using simulations and nonpara-
metric regression”, Insurance: Mathematics and Economics 19 (1996), 19–30.

12Expectation is taken with respect to the risk-neutral measure here, since the scenario set in the
forward pass is generated under this measure.

13F.A. Longstaff and E.S. Schwartz, “Valuing American options by simulation: A simple least-
squares approach”, Review of Financial Studies 14 (2001), 113–147.
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---

Tx = N*ones(M,1); Sx = S; % initialize exercise data

---

jx = EV(S) > CV(S); % exercise indices

Tx(jx) = k; Sx(jx) = Sm(jx,k); % update exercise data

V = exp(-(Tx-k)*r*dt).*EV(Sx); % estimated option values

---

Code Example 7.5: Alternative modification of Code Example 7.3. Approximate option
values are computed from an exercise strategy already within the loop, rather than only
after completion of the backward pass.

---

jitm = EV(S) > 0; % "in the money" indices

w = BF(S(jitm))\C(jitm);

---

Code Example 7.6: Additional modification of Code Example 7.3: regression only on
data points where the value of immediate exercise is positive.

be computed within the loop. The final step is the same as in Code Example 7.3. A

further modification that was also proposed by Longstaff and Schwartz is to carry

out the regression step only taking into account sample points in which the option is

“in the money”, i.e. the value of immediate exercise is positive. The corresponding

modification is shown in Code Example 7.6.

The LSMC method requires the choice of basis functions which are used to

approximate functions expressing conditional expectations. Even when convergence

can be proved as the number of basis functions tends to infinity, the accuracy of the

method when a limited set of basis functions is used may depend strongly on whether

these functions are chosen appropriately. In a given application it may be possible to

make a reasoned choice on the basis of a more or less precise idea of the shape of the

conditional expectations. The dependence of the LSMC method on basis functions

also means that the method is not as insensitive to state space dimension as one

might hope for in a Monte Carlo method. For instance, the number of independent

polynomials up to the second degree is 10 if the number of variables is three, and

is 21 in five variables. Nevertheless, the method remains understandably popular in

cases where no suitable alternative is available.

7.5 Exercises

1. In this exercise we use a Monte Carlo method for computing the price of a

European call option according to the standard Black-Scholes model, using Euler

time stepping and using the bond as a numéraire. Assume the following data:

interest rate r = 0.04, volatility σ = 0.2, period T = 1, current asset price S0 = 100,

exercise price K = 110. With these parameters, generate 104 simulation runs of
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the Black-Scholes model. Since we want to determine expectations with respect to

the equivalent martingale measure QB that corresponds to taking the bond as a

numéraire, the simulations should be done under QB (cf. (3.81)). Take time steps of

size 0.02. For each run, compute e−rT max(ST −K, 0). Compute the average value

and the variance of the results; from these, obtain a point estimate of the option

value and an approximate confidence interval. Compare the obtained estimate to

the exact value (3.50).

2. In this exercise we use the Monte Carlo method to compute the value of an

Asian option in the standard Black-Scholes model. The value of the option at the

maturity date is defined by max(A − K, 0) where A is the arithmetic average of

the price of the underlying over the lifetime of the option, and K is the strike. We

will use the following parameter values: riskless rate of interest r = 0.02, volatility

σ = 0.2, time of maturity T = 1, current value of the underlying S0 = 100, strike

K = 100.

a. Write a program that generates, for any n, a collection of n independent tra-

jectories of the price of the underlying and the corresponding averages. Use 100

time steps and assume that the average price of the underlying over the lifetime of

the option can be replaced by the average of the values at the discrete time points.

Since we want to determine expectations with respect to the equivalent martingale

measure QB that corresponds to taking the bond as a numéraire, the simulations

should be done under QB (cf. (3.81)).

b. Using the script of part a. with n = 105, compute a Monte Carlo estimate of the

value of the Asian option. Is the Asian option more or less expensive than its Euro-

pean counterpart? Determine an approximate confidence interval corresponding to

your Monte Carlo estimate. How large should n be taken approximately to reduce

the width of the confidence interval to 0.01? Ignore the time discretization error.

c. Using 1000 simulations, produce a scatter plot of the European option payoff at

expiry versus the Asian option payoff at expiry. Determine an approximate value of

the correlation coefficient of the two variables. How much reduction of variance do

you expect to obtain from using the European option payoff as a control variate?

d. Recompute the Monte Carlo estimate, using n = 105 as before, but this time

with the European option payoff as a control variate. Determine an approximate

confidence interval for your estimate and compare the length of this interval to the

one that you got from the “raw” Monte Carlo method.

e. Now, instead of using the European option as a single control variate, use the

following four control variates: WT/2, W 2
T/2, WT and W 2

T . Estimate optimal values

of the coefficients αi from a regression based on a pilot sample of size 103. Recom-

pute the Monte Carlo estimate and compare the improvement in the length of the
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confidence interval that you get in this way to the improvement obtained in part d.

f. Add the European call option to the four control variates of part e. How much

improvement does this bring?

g. Instead of determining estimates for the optimal coefficients αi by regression as

in part e., it is also possible to use (7.18) where the matrix ΣXX can be computed

analytically, although the vector ΣXY still needs to be determined on the basis of

a sample. Find the variance-covariance matrix for the four control variates of part

d., and compute the coefficients αi based on this and on a pilot sample of size

103 to compute the vector ΣXY . Recompute the Monte Carlo estimate using the

new coefficients. Do you see improvement with respect to part e.? Explain your

findings.

3. Let X1, X2, . . . , Xk be a collection of random variables whose expectations are to

be estimated on the basis of samples drawn from their joint distribution. Let Y be a

linear combination of the variables Xj with coefficients cj , i.e. Y =
∑k

j=1 cjXj , and

suppose that EY is known analytically, so that Y can be used as a control variate

for each of the Xi’s. The control variate estimate for EXj , based on a sample of

size n from the joint distribution of X1, . . . , Xk, is

m̂j =
1

n

n∑
i=1

xij − αj
( 1

n

n∑
i=1

k∑
j=1

cjx
i
j − EY

)
(7.34)

where xij is the outcome for Xj in the i-th trial. Suppose that the coefficients αi are

determined by (7.12) where the variance and the covariance are replaced by their

sample equivalents (which may be taken from a pilot sample).

a. Let the outcomes of the random variables Xj (j = 1, . . . , k) in the i-th trial be

denoted by xij (j = 1, . . . , k). Define the modified versions

x̂ij = xj − αj

(
k∑
j=1

cjxj − EY

)
.

Prove that these modified versions satisfy
∑k

j=1 cj x̂
i
j = EY . Derive that the esti-

mates defined in (7.34) satisfy the same relationship:

k∑
j=1

cjm̂j = EY. (7.35)

b. The current value of assets in a trust fund is 100. The assets are invested;

we assume that the value of the assets follows a geometric Brownian motion with

volatility σ = 15%. The riskless interest rate is 2% and does not change through
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time. Three parties are involved with the trust fund. These parties are called

Beneficiary, Sponsor, and Charity. At the end of each year, during the coming 10

years, a benefit will be paid to the Beneficiary. If the value of the fund’s assets at the

end of a given year is 105 or more, then the Beneficiary receives 4% of the assets; if

the value is less than 105 but still at least 95, then the Beneficiary receives 2%; if the

value of the fund’s assets is less than 95, then the benefit for that year is canceled.

At the end of the period of 10 years, after the last payment to the Beneficiary has

been made, the asset value will be restored to 100 in the following way. If the end-

of-period asset value is less than 100, the difference is supplied by the Sponsor. On

the other hand, if the asset value is more than 100, then the part of the asset value

that exceeds 100 goes to Charity. Using a basic Monte Carlo procedure with 105

samples, determine the time-0 value of the policy to the Beneficiary and to Charity,

and the time-0 value of the contribution of the Sponsor. Report the results together

with a 95% confidence interval.

c. Argue that the sum of the time-0 values to the Beneficiary and to Charity,

together with the time-0 value of the assets at termination of the policy (i.e. after

restoration), must be equal to the sum of the initial value of the assets and the

time-0 value of the contribution of the Sponsor (“law of conservation of value”).

Verify whether this equality is satisfied, within the limits of Monte Carlo accuracy,

by the outcomes that you found in part b.

d. Part c. indicates that a control variate technique as described in part a. can be

applied. Determine coefficients αi on the basis of a pilot sample of size 104, and

then repeat the computation of part b., this time using the control variate. Do you

obtain a reduction of variance? Verify that the estimated values satisfy the relation

of part c. up to machine epsilon.

4. Consider a European option with payoff function f(ST ) within the Black-Scholes

model. In this model, ST can be written as a function of a standard normal random

variable Z, so that the price of the option can be written in the form E[F (Z)] where

Z ∼ N(0, 1) and F (z) is a given function. If an approximation of F can be given

in the form F (z) ≈
∑n

i=1 ciφi(z) where the φi’s are functions such that E[φi(Z)] is

known, then the random variable
∑n

i=1 ciφi(Z) should be an effective control variate.

a. (Compare Exc. 4.5.8.) Consider a call option, so that f(ST ) = max(ST −
K, 0). Write a script to approximate the corresponding function F (z) by a linear

combination of the functions φi(z) (i = 1, 2, . . . , N) defined, for odd values of N , by

φi(z) = cos
(

1
2(i−1)az

)
(i = 1, 3, . . . , N) and φi(z) = sin

(
i
2az
)

(i = 2, 4, . . . , N−1).

Choose the constant a such that the basis function φ2(z) = sin(az) is increasing

across an interval that is wide enough to contain practically all sample values in a

draw from the standard normal distribution of size 105. Determine the coefficients
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ci similarly to Exc. 4.5.8.

b. Take N = 7. Draw a plot showing both F (z) and the approximating function

F̃ (z) :=
∑N

i=1 ciφi(z). Also generate a scatter plot showing outcomes of F (Z) and

F̃ (Z) in a draw of 105 samples from the standard normal distribution. On the

basis of this draw, determine the control variate estimate and the corresponding

confidence interval.

c. Experiment with the value of N and the number of grid points used to determine

the coefficients ci to see if you can get improvements. Do you get good results when

you take high values for both parameters?

5. In this exercise we consider a put option with strike K = 75 in a Black-Scholes

model with r = 0.04, σ = 0.2, T = 1, and S0 = 100. With these parameter values,

the put is far out of the money. Let us ignore the fact that the contract can be

priced analytically and instead compute the value on the basis of a Monte Carlo

procedure based on time stepping.

a. Apply a standard Monte Carlo procedure with 250 time steps and 10 000 repli-

cations. Compute a point estimate and an approximate confidence interval. Verify

that the confidence interval contains the exact value obtained from the Black-Scholes

formula.

b. The situation calls for an application of importance sampling based on a Girsanov

transformation. Since there is a positive payoff only in asset price trajectories that

go down substantially, it should be advantageous to replace the drift parameter in

the asset price dynamics from the risk-neutral value r = 0.04 to a large negative

value. With such a value, run again the Monte Carlo method, taking care to multiply

the result of each simulation by the appropriate factor as indicated by the change

of measure. Calculate a point estimate and compute an approximate confidence

interval for the estimated option value. Do you observe improvement with respect

to the method of the previous part? Try a few different values of the drift parameter

to see which one works best.

6. Redo Exc. 1, but now using the stock price St as a numéraire rather than the

bond; cf. (3.82). How does the confidence interval that you obtain in this way

compare to the confidence interval that you found in Exc. 1?

7. a. Let f(x) be a continuous function defined on [0, 1] that is continuously

differentiable on the open interval (0, 1). Suppose that Z is a standard normal

variable. Prove that the random variable Φ(Z) follows the uniform distribution on

the interval [0, 1], and that the following relation holds:

E[f ′(Φ(Z))] = f(1)− f(0). (7.36)
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b. In the particular case in which f(x) =
√
x, compute the expectation in (7.36)

by means of the Monte Carlo method, using 104 trials. Find a point estimate

and determine an estimated 95% confidence interval. Does the confidence interval

contain the true value?

c. Repeat the experiment of part b., but now using f(x) = x0.1. Does the computed

confidence interval contain the true value? Repeat the calculation a few times. Is

the size of the confidence interval approximately the same in each case?

d. Draw a plot in which you show the density of the normal distribution as well

as the function f ′(Φ(z))φ(z), for f(x) = x0.5 and for f(x) = x0.1. Explain the

difference in the results that you obtained in part b. and in part c.

8. Consider a standard Black-Scholes model with r = 0.02, σ = 0.2, and current

asset value S0 = 100. Suppose we want to price a put option that has strike 100

and one year to maturity, making use of the Monte Carlo method with Euler time

stepping and variance reduction by the method of antithetic variables. We take

the bond as a numéraire so that simulations will be done under the corresponding

equivalent martingale measure.

a. Generate 1000 approximate trajectories of the underlying asset S with time step

0.01, using 100 independent draws z1, . . . , z100 from the standard normal distribution

for each trajectory. Compute the put payoffs that arise in these scenarios, and take

the average to obtain a first Monte Carlo estimate. Also compute an approximate

confidence interval.

b. For each trajectory generated in part a., also generate its antithetic counterpart,

which is obtained by replacing the 100 draws z1, . . . , z100 by −z1, . . . ,−z100. In

this way you obtain again 1000 trajectories. Compute the corresponding option

payoffs, and use these to find a second Monte Carlo estimate and a corresponding

approximate confidence interval.

c. Now compute a Monte Carlo estimate and a confidence interval based on all of

the 2000 trajectories that you have generated. Compare the confidence interval that

you find in this way to the two confidence intervals that you have obtained before,

and which were each based on 1000 trajectories. Is the reduction more than would

be expected from the fact that twice as many samples are used? Explain on the

basis of the theory in Subsection 7.2.3.

d. Repeat the steps above, assuming now that the strike of the put option is 80

rather than 100. Can you explain why the method of antithetic variables is less

effective in this case?

9. The payoff of an Asian call option with two sample points at times T/2 and T is

defined by max(1
2(ST/2 + ST )−K, 0) where St is the price of the underlying and K
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is the strike. Take T = 1, K = 100, S0 = 100, and assume the Black-Scholes model

with interest rate r = 0.02 and volatility σ = 0.2.

a. Compute the price of the option at time 0 in the following three ways.

(i) (Numerical integration method.) The price of the option is given by

C = e−rTEQ max
(

1
2(ST/2 + ST )−K, 0

)
which may be written more explicitly as

C = e−rT
∫ ∞
−∞

∫ ∞
−∞

F (x, y)g(x, y) dx dy

where

F (x, y) = max
(

1
2 [S0(exp(a+ bx))(1 + exp(a+ by))]−K, 0

)
with

a = (r − 1
2σ

2)T/2, b = σ
√
T/2

and

g(x, y) = 1
2πe
− 1

2
x2
e−

1
2
y2
.

It may not be attractive to evaluate the integral analytically; however a numerical

approximation of the integral may be computed using the fact that in general a

double integral of the form
∫ ∫

f(x, y) dx dy can be approximated by a double sum∑∑
f(xi, yi)∆xi∆yi. Make sure to use a grid that covers all of the area in which

the integrand differs substantially from 0.

(ii) (Finite-difference method.) At time T/2, the Asian option becomes equivalent

to a European call option, since one may write

max
(

1
2(ST/2 + ST )−K, 0

)
= 1

2 max
(
ST − (2K − ST/2), 0

)
.

So the price of the Asian option at time 0 may be viewed as the price of a European

option which matures at time T/2 with a payoff that depends on ST/2; specifically,

the payoff is equal to one-half the value of European call option with initial asset

price ST/2, strike 2K − ST/2, and time to maturity T/2. The latter option may

be valued by means of the standard Black-Scholes formula. Given this payoff, the

option price at time 0 can be calculated by means of a finite-difference method.

(iii) (Monte Carlo method.) The Asian option can also be priced on the basis of a

Monte Carlo method. Generate a large number (for instance 105) of trajectories un-

der the risk-neutral measure using an Euler method, compute the value of the Asian

option for each trajectory, take the average and discount to 0 to find an estimate of

the option price. Also compute a 95% confidence interval for the estimate.
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b. Comment on the applicability of the three methods when the price of the un-

derlying asset is not a geometric Brownian motion, but instead is described by a

stochastic differential equation for which no explicit solution is available. Also com-

ment on the feasibility of each of the methods when the underlying asset dynamics is

geometric Brownian motion but the number of sampling times is, say, 10 or more.
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Appendix A

Notes

Chapter 1. Section 1.1 is based on an article that I wrote for Nekst, the magazine

of the student association Asset Econometrics1 at Tilburg University. The article

was published in the June 2011 issue of this journal. The main sources for the article

are the books by Bernstein and Mehrling that are mentioned in the Preface.

Chapter 2. The non-stochastic introduction to Itô calculus in Section 2.4.2 is

motivated by work of Hans Föllmer (“Calcul d’Itô sans probabilités”, Séminaire de

probabilités (Strasbourg), tome 15 (1981), pp. 143–150).

Chapter 3. The information in footnote 12 is from “Arbitrage: Historical perspec-

tives” by Geoffrey Poitras, in Encyclopedia of Quantitative Finance (Rama Cont,

ed.), Wiley, 2010. The “variational” form of the Black-Scholes formula (i.e. the form

in which it is written as the maximum of another function), as given in Exc. 7, can

be found in Jean-Paul Décamps and Jean-Charles Rochet, “A variational approach

for pricing options and corporate bonds”, Economic Theory 9 (1997), 557–569.

Chapter 4. The solution method for the partial differential equation (4.27) that

is shown in Section 4.2.1 follows the method described by Fourier in §364 of his

book Théorie analytique de la chaleur (Analytical Theory of Heat) which appeared

in 1822.2 For the important step from (4.31) to (4.32), Fourier gives credit to

Laplace.3 The expression (4.34) can be made more general by replacing the sum by

an integral. The function c(λ) associated to a given function φ(y) by the equation

φ(y) =

∫ ∞
−∞

c(λ)e−λy dλ (A.1)

1In this context, the term “Asset” stands for “Association of students studying economics in
Tilburg”.

2J. Fourier, Théorie analytique de la chaleur, Didot, Paris, 1822. Reprinted by Éditions Jacques
Gabay, Paris, 1988.

3Pierre Simon, marquis de Laplace (1749–1827), French mathematician and astronomer.
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(where the minus sign in the exponent is just a matter of convention) is called

the two-sided Laplace transform of φ. The integral equation (A.1) was studied by

Laplace in 1782.

For the development in Section 4.4.2, specifically the trick of differentiating

(4.56), I have followed my own paper “Efficiency of institutional spending and in-

vestment rules”, Scandinavian Actuarial Journal 2020(5), 454–476. The standard

method for dealing with equations of the form (4.56) is to consider them as a spe-

cial case of Kummer’s4 differential equation, which has a known solution in terms

of confluent hypergeometric functions. For instance, this is the way it was done by

Merton in his 1973 paper on option pricing (“Theory of rational option pricing”,

Bell Journal of Economics and Management Science 4, 141–183).

A general formula for option prices subject to stochastic interest rates was given

by Merton in the same paper. The specific form taken by the formula in the case of

a call option within the Vasicek model is given in a paper by Ramon Rabinovitch

(“Pricing stock and bond options when the default-free rate is stochastic”, Journal of

Financial and Quantitative Analysis 24 (1989), 447–457). The derivation in Section

4.4.4 is different from the one in Rabinovitch’s paper. A derivation similar to the one

given here is in “A Black-Scholes like model with Vasicek interest rates” (working

paper, Wirtschaftsuniversität Wien, 2007) by Zehra Eksi.

Exc. 8 has taken inspiration from the COS method that has been developed by

Fang Fang and Kees Oosterlee. For much more information, see their paper “A novel

pricing method for European options based on Fourier-cosine series expansions”

(SIAM Journal on Scientific Computing 31 (2009), 826–848).

Chapter 5. At the end of Section 5.4, the fact is discussed that any interest model

can be made to reproduce a currently observed term structure by adding a suitable

deterministic function of time to the short rate. This was probably first observed by

Philip Dybvig; see his contribution “Bond and bond option pricing based on the cur-

rent term structure” to the book Mathematics of Derivative Securities (Cambridge

University Press, 1997), edited by Michael Dempster and Stanley Pliska. Dybvig

refers to the function f(t) appearing in (5.31) as a “fudge factor” (p. 280 in the cited

book).

Exercise 9 was inspired by a paper of Jens Christensen, Francis Diebold, and

Glenn Rudebusch (“The affine arbitrage-free class of Nelson-Siegel term structure

models”, Journal of Econometrics 164 (2011), 4–20).

Chapter 7. For the discussion of the LSMC method, I have used a paper by

Lars Stentoft (“Value function approximation or stopping time approximation: A

comparison of two recent numerical methods for American option pricing using

simulation and regression”, Journal of Computational Finance 18 (2014), 56–120).

4Ernst Eduard Kummer (1810–1893), German mathematician.
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Hints and answers for selected

exercises

B.1 Exercises from Chapter 1

1. For the total variation part, consider partitions of the form 0 < 1/((N − 1
2)π) <

1/((N − 3
2)π) < · · · < 1/(1

2π) < 1.

2. a. Let f be a continuous function defined on a closed and bounded interval [a, b].

For a proof by contradiction, suppose that f is not uniformly continuous. Then

there exists ε > 0 such that for all k ∈ N there exist xk and yk in [a, b] such that

limk→∞ |xk − yk| = 0, but |f(xk) − f(yk)| > ε. Since the sequence (xk)k=1,2,... is

an infinite sequence within the closed and bounded interval [a, b], there must be a

sequence of increasing indices k1 < k2 < · · · such that the subsequence (xkj )j=1,2,...

converges to a limit, say x̄, in the interval [a, b]. Likewise, the sequence (ykj )j=1,2,...

is an infinite sequence in [a, b], so it must have a subsequence that converges to

a limit, say ȳ, in [a, b]. The corresponding subsequence of (xkj )j=1,2,... converges

to x̄. To avoid further proliferation of subindices, conclude from this reasoning

that without loss of generality it can be assumed that the original sequences (xk)

and (yk) converge to x̄ and ȳ respectively. Because f is continuous, the sequences

(f(xk)) and (f(yk)) converge to f(x̄) and f(ȳ) respectively. From the assumption

that |f(xk) − f(yk)| > ε for all k, it follows that |f(x̄) − f(ȳ)| ≥ ε. On the other

hand, since limk→∞ |xk − yk| = 0, the two limit points x̄ and ȳ must be the same.

We have a contradiction. (An alternative and shorter proof can be given by using

the notion of compactness.)

b. Let M denote the total variation of the function g on the interval [a, b]. Choose

ε > 0. By the fact that g is uniformly continuous on [a, b], as shown in part a.,

there exists δ > 0 such that |g(x) − g(y)| < ε/M for all x and y in [a, b] such that
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|x− y| < δ. For every partition Π with |Π| < δ, we then have

n∑
j=0

(
g(xj+1)− g(xj)

)2
<

ε

M

n∑
j=0

|g(xj+1)− g(xj)| ≤ ε.

B.2 Exercises from Chapter 2

4. For s > t, we can write

EtW
3
s = Et

[
(Wt + (Ws −Wt))

3
]

=

= Et
[
W 3
t + 3W 2

t (Ws −Wt) + 3Wt(Ws −Wt)
2 + (Ws −Wt)

3
]

=

= W 3
t + 3Wt(s− t).

Therefore,

EtXs = Et
[

1
3W

3
s − sWs

]
= 1

3W
3
t +Wt(s− t)− sWt = 1

3W
3
t − tWt = Xt.

Alternatively, compute the differential of Xt:

d(1
3W

3
t − tWt) = W 2

t dWt +Wt dt−Wt dt− t dWt = (W 2
t − t) dWt.

From the telescope rule it now follows that we can write

Xt = X0 +

∫ t

0
(W 2

s − s) dWs

which shows that the process Xt is a martingale.

5. Compute d[X,X]t and use the telescope rule.

6. a. From the Itô formula, one has

d(cosWt) = − sinWt dWt − 1
2 cosWt dt.

The telescope rule implies that

cosWt − cosW0 = −
∫ t

0
sinWs dWs − 1

2

∫ t

0
cosWs ds.

Taking expectations, one finds

E[cosWt]− 1 = −1
2

∫ t

0
E[cosWs] ds.
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Figure B.1: Graphical output for Exc. 2.8.8a.

This shows that the function x(t) := E[cosWt] satisfies the differential equation

dx

dt
(t) = −1

2x(t).

Since x(0) = 1, it follows that x(t) = exp(−1
2 t). Because the random variable aZ

with Z ∼ N(0, 1) has the same distribution as Wt with t = a2, one obtains (2.99).

7. For part a., compute the cumulative distribution function of Z. For part b.,

note (for instance) that P (X + Z = 0) = P (Y = −1) = 1
2 . If X and Z would be

jointly normally distributed, then X + Z would also be normally distributed, and

consequently the probability of the event X + Z = 0 would be zero.

8. a. The results are random, but qualitatively they should look as in Fig.,B.1.

b. Again the results are random, but less so than in the case of part a.; see Fig. B.2.

9. b. See Fig. B.3.

10. b. See Fig. B.4.

11. 1c, 2d, 3b, 4a.

12. 1d, 2a, 3b, 4c.

13. a. dZt = 0.

c. A script is shown in Code Example B.1; examples of graphical output are in

Fig. B.5. Even with ∆t = 0.001, the deviations due to the discretization error are

still quite noticeable.
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Figure B.2: Graphical output for Exc. 2.8.8b.
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Figure B.3: Graphical output for Exc. 2.8.9b.
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Figure B.4: Graphical output for Exc. 2.8.10b.
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X0 = 1; Y0 = 0; dt = 0.001; T = 5; N = T/dt+1; % data

Xs = X0*ones(1,N); Ys = Y0*ones(1,N); % reservation of memory space

X = X0; Y = Y0; % initialization

for k = 1:N-1

dW = sqrt(dt)*randn;

dX = -0.5*X*dt - Y*dW; dY = -0.5*Y*dt + X*dW;

X = X + dX; Y = Y + dY;

Xs(k+1) = X; Ys(k+1) = Y;

end

plot(Xs,Ys); axis([-1.2 1.2 -1.2 1.2]); axis square

Code Example B.1: Code for Exc. 13.
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0.6

0.8

1

Figure B.5: Graphical output for Exc. 13. The left panel shows a simulation with ∆t =
0.01, the right panel shows a simulation with ∆t = 0.001.

15. a. From d(tWt) = Wt dt+ t dWt one finds by integration from 0 to 1:

1 ·W1 − 0 ·W0 =

∫ 1

0
Wt dt+

∫ 1

0
t dWt

so that

X =

∫ 1

0
Wt dt = W1 −

∫ 1

0
t dWt =

∫ 1

0
dWt −

∫ 1

0
t dWt.

The two stochastic integrals with deterministic integrands on the right hand side are

driven by the same Wiener process and are therefore jointly normally distributed.

From (2.49) and (2.66) it follows that EX = 0 and

var(X) =

∫ 1

0
dt− 2

∫ 1

0
t dt+

∫ 1

0
t2 dt = 1

3 .

b. Write XT =
∫ T

0 Wt dt. The reasoning of part a. can be followed to conclude

that var(XT ) = 1
3T

3. Alternatively, one can make use of Exercise 3 to derive that

XT = T 3/2X1.
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B.3 Exercises from Chapter 3

1. b. Suppose that condition (i) does not hold (i.e. there is no arbitrage). Then the

subspace V defined by

V =

{[
φ0Su + ψ0Bu

φ0Sd + ψ0Bd

] ∣∣∣∣∣ φ0S0 + ψ0B0 = 0

}

intersects the nonnegative cone R2
+ only in 0. Since φ0S0+ψ0B0 = 0 holds if and only

if ψ0 = −φ0S0/B0, the subspace V is generated by the vector [Su −BuS0/B0 Sd −
BdS0/B0]>. It follows from part a. that there exist positive constants y1 and y2 such

that

y1

(
Su −Bu

S0

B0

)
+ y2

(
Sd −Bd

S0

B0

)
= 0.

Define qu = y1Bu/(y1Bu + y2Bd), qd = y2Bd/(y1Bu + y2Bd). Then qu and qd are

both positive, qu + qd = 1, and quSu/Bu + qdSd/Bd = S0/B0. Therefore, condition

(ii) holds. Next, assume that condition (i) does hold, and that condition (ii) holds

as well. It follows from (i) that there exists a number φ0, necessarily nonzero, such

that

φ0

[
Su −BuS0/B0

Sd −BdS0/B0

]
∈ R2

+ \ {0}.

Because both Bu and Bd are positive, this implies that also

φ0

[
Su/Bu− S0/B0

Sd/Bd − S0/B0

]
∈ R2

+ \ {0}.

On the other hand, condition (ii) implies that

qu(Su/Bu − S0/B0) + qd(Sd/Bd − S0/B0) = 0

where both qu and qd are positive. From this it follows that Su/Bu − S0/B0 and

Sd/Bd − S0/B0 cannot be of the same sign, and so we have a contradiction.

2. a. The market is described in terms of one state variable (St), one driving

Brownian motion, and two traded assets (St and Ct). We have

[
σY πY

]
=

[
σS(t, S) S

σC(t, S) πC(t, S)

]

where Yt is the vector of asset prices, and σC = (∂πC/∂S)σS by Itô’s rule. The

market is complete and arbitrage-free if and only if the above matrix is invertible
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for all t and S, or in other words, if and only if

πC(t, S)− S ∂πC
∂S

(t, S) 6= 0 for all t and S

because the common factor σS(t, S) is always positive. Since the function πC(t, S)/S

is strictly increasing as a function of S, its partial derivative with respect to S is

positive:

0 <
∂

∂S

∂(πC(t, S)/S)

∂S
=

1

S

∂πC(t, S)

∂S
− πC(t, S)

S2
.

This implies the condition above (multiply by S2).

b. The condition for the extended market to be arbitrage-free is that the equationµSµC
rB

 =

σS S

σC πC

0 B

[λ
r̃

]

(with B = B0e
rt) admits a solution (λ, r̃). From the first and the third equation we

get r̃ = r and λ = (µS − rS)/σS . The condition to be fulfilled is therefore

µC − rπC = σC
µS − rS
σS

= (µS − rS)
∂πC
∂S

.

With use of Itô’s rule to expand µC , this condition may be written as follows in

terms of the original problem data:

∂πC
∂t

+ rS
∂πC
∂S

+ 1
2σ

2
S

∂2πC
∂S2

= rπC .

c. Apply the replication recipe:

[
σB πB

]
=
[
φS φC

] [σS S

σC πC

]
.

Since σB = 0 and πB = B0e
rt, we get

0 = φSσS + φCσC = φSσS + φC
∂πC
∂S

σS

so that φS = −(∂πC/∂S)φC , and

ertB0 = φSS + φCπC = φC
(
−(∂πC/∂S)S + πC).

We find φC = ertB0/
(
πC − (∂πC/∂S)S

)
and φS = −(∂πC/∂S)φC .
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7. a. We have
∂f

∂x
(S0, x) = S0φ(x)− e−rTKφ(x− σ

√
T ) .

This is equal to 0 when

S0

e−rTK
=
φ(x− σ

√
T )

φ(x)
= exp

(
xσ
√
T − 1

2σ
2T
)
.

From this one verifies that the derivative is 0 at x = d1.

b. Since C0 = f(S0, d1), we have

∂C0

∂S0
=

∂f

∂S0
(S0, d1) +

∂f

∂x
(S0, d1)

∂d1

∂S0
(S0) = Φ(d1)

because
∂f

∂S0
(S0, x) = Φ(x),

∂f

∂x
(S0, x)

∣∣∣
x=d1

= 0.

c. Write z = Φ−1(y), and let the derivative of z with respect to y be denoted by z′.

Since Φ(z) = y one finds by differentiation with respect to y that φ(z)z′ = 1, i.e.

z′ = 1/φ(z). Therefore

g′(y; a) = φ(a+ z)
1

φ(z)
= exp

(
−1

2a
2 − az

)
.

Because a > 0 and y is an increasing function of z, it follows that g′(y; a) is a

decreasing function of y. Consequently, g(y; a) is concave.

d. It was already shown in part a. that the function x 7→ f(S0, x) has a stationary

point at x = d1. To show that we actually have a maximum, note that, if we define

y = Φ(x− σ
√
T ), then

f(S0, x) = S0g
(
y;σ
√
T
)
− ye−rTK.

Since y and x are monotonically related, any extremum of the left hand side as a

function of x is also be extremum of the right hand side as a function of y, and the

two extrema are of the same type. Since the right hand side is concave by part c.,

only a single maximum can occur.

8. a. The condition for absence of arbitrage and completeness is that the matrix

[
σY πY

]
=

 σS 0 S

σ1F σ2F F

0 0 B


should be invertible. This is indeed the case, since the determinant of the matrix is
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σS ·σ2F ·B and all factors are positive (for St and Ft this holds because they follow

geometric Brownian motions).

b. The market prices of risk corresponding to the two Brownian motions can be

computed from the equation µY − rπY = σY λ:[
(µ− r)S
(µ1 − r)F

]
=

[
σS 0

σ1F σ2F

][
λ1

λ2

]
.

If λ2 = 0, then (µ− r)S = σSλ1 as well as (µ1 − r)F = σ1Fλ1, so that (µ− r)/σ =

(µ1 − r)/σ1, or in other words

µ1 − r =
σ1

σ
(µ− r).

Since according to economic theory the price of risk associated to a particular source

of risk is determined by the correlation of this source to the wealth of the average

investor, the assumption λ2 = 0 could be justified when W2 represents the part of the

risk in the investment fund that is uncorrelated to the general market (idiosyncratic

risk).

9. b. See the graphical output in Fig. B.6 (left panel). It appears that, when

conditioning is done on the value at maturity of the underlying, the conditional

mean is more or less constant, but the conditional variance is larger at points close

to the strike. In scenarios in which the value of the underlying is close to strike

when maturity approaches, the delta hedge becomes very sensitive to the value of

the underlying; this causes a relatively large variance of the hedge error.

c. See the graphical output in Fig. B.6 (right panel). The plot indicates that, when

realized volatility is less than the volatility that is assumed in the computation of

the option price, the hedge error tends to be positive, which means that the hedger

has a profit. On the other hand, if the realized volatility is higher, then the hedger

experiences a loss. This is a natural relationship in view of the fact that the option

price is increasing in volatility. The conditional variance, on the other hand, appears

approximately constant when conditioning is done on realized volatility.

10. b. See the script in Code Example B.2. Graphical output is shown in Fig. B.7

and Fig. B.8. The standard deviation of the stop-loss strategy is about 6, while the

delta hedge produces a standard deviation of approximately 2. These are nonnegli-

gible numbers compared to the Black-Scholes price of the option, which is 9.93.

c. The standard deviation associated to the stop-loss strategy doesn’t decrease much

when the time step is reduced. In contrast, the standard deviation induced by the

delta hedge is reduced each time; its value for ∆t = 10−4 is approximately 0.06.

d. In the limit, the scatter diagram for the delta hedge reduces to a straight line
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Figure B.6: Graphical output for Exc. 3.9. The left panel shows dependence of the hedge
error on the value of the underlying at maturity, whereas the right panel shows dependence
on the realized volatility.

mu = 0.12; sigma = 0.2; r = 0.04; T = 1; S0 = 100; K = 100;

Kh = exp(-r*T)*K; M = 1000; dt = 0.1;

t = 0; Vstl = 0; Vdel = 0; Sh = S0;

while t < T-0.5*dt

phstl = Sh > Kh;

phdel = normcdf((log(Sh/Kh)+0.5*sigma^2*(T-t))/(sigma*sqrt(T-t)));

dW = sqrt(dt)*randn(M,1);

Shnw = Sh.*exp((mu-r-0.5*sigma^2)*dt + sigma*dW);

dVstl = phstl.*(Shnw-Sh);

dVdel = phdel.*(Shnw-Sh);

t = t + dt; Vstl = Vstl + dVstl; Vdel = Vdel + dVdel; Sh = Shnw;

end

CTh = max(Sh-Kh,0);

figure(1); plot(CTh,Vstl,’.’)

xlabel(’option payoff’); ylabel(’sum of trading gains’)

figure(2); plot(CTh,Vdel,’.’)

xlabel(’option payoff’); ylabel(’sum of trading gains’)

disp([’std from stop-loss hedge: ’ num2str(std(CTh-Vstl))])

disp([’std from delta hedge: ’ num2str(std(CTh-Vdel))])

Code Example B.2: Code for Exc. 10.

with slope 1. The Black-Scholes price is equal to minus the intercept.

11. a. Let CiT denote the payoff at time T of a standard call option written on the

asset St with strike Ki (i = 1, 2, 3). We then have

CT =
L

K2 −K1
C1
T −

(
L

K2 −K1
+

L

K3 −K2

)
C2
T +

L

K3 −K2
C3
T .

In a similar way, any derivative whose payoff is a continuous piecewise linear function

of ST can be written as a linear combination of call options (and a constant payoff,

if the payoff is not zero for low values of ST ).
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Figure B.7: Graphical output for Exc. 3.10. The left panel is for the stop-loss hedge, the
right panel for the delta hedge. The plots have been created with time step ∆t = 0.1.
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Figure B.8: Same as in Fig. B.7, but now with ∆t = 10−4.

b. Since it is given thatHT is obtained as the payoff of an optimal linear combination

of available assets, the quantity var(CT −αHT ) must be minimized at α = 1. Since

var(CT −αHT ) = var(CT )− 2α cov(CT , HT ) +α2 var(HT ), it follows from this that

cov(CT , HT ) = var(HT ). Therefore,

var(CT −HT )

var(CT )
= 1− cov(CT , HT )

var(CT )
= 1− cov(CT , HT )2

var(CT ) var(HT )
= 1− ρ2.

The expression (3.99) follows from this. For HQ = 0.5 one needs ρ = 0.87; HQ =

0.8 requires ρ = 0.98. A plot of the hedge quality as a function of the correlation

coefficient is shown in Fig. B.9. It appears that high-quality hedging is only possible

if very high replication accuracy is achievable. Of course, this holds for dynamic

hedging just as well as for static hedging.

14. a. The given model can be described with BE , BA, and Z as state variables,
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Figure B.9: Hedge quality as a function of correlation between product payoff and value
of hedge portfolio at the time of maturity, under the assumption of optimality. The curve
shown is a quartercircle.

and with Y1 := S and Y2 := BE as traded assets. We have

dS = Z dBA +BA dZ = (rAZB
A + µZBA) dt+ σZBA dW

so that

[σY πY ] =

[
σZBA ZBA

0 BE

]
.

From the fact that the above matrix is invertible (assuming σ 6= 0) for all relevant

(i. e. positive) values of the state variables it follows that the market is complete.

The risk-free rate of return r and the market price of risk λ are found by solving

the Black-Scholes equation µY = rπY + σY λ, which in this case is[
(rA + µ)ZBA

rEB
E

]
=

[
σZBA ZBA

0 BE

][
λ

r

]

so that r = rE and λ = (µ+ rA − rE)/σ.

b. Under the equivalent martingale measure corresponding to the numéraire BE ,

the relative price process St/B
E
t should be a martingale. Write

d
S

BE
= d

[
Z
BA

BE

]
= Z(rA − rE)

BA

BE
dt+

BA

BE
(µZ dt+ σZ dW )

= Z
BA

BE
((µ+ rA − rE) dt+ σ dW )

= Z
BA

BE
σ dW̃
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where W̃ satisfies

dW̃ =
µ+ rA − rE

σ
dt+ dW.

The equivalent martingale measure is given, through Girsanov’s theorem, as the

measure under which the process W̃ is a Brownian motion. For the exchange rate

dynamics, one obtains

dZ = µZ dt+ σZ (dW̃ − µ+ rA − rE
σ

dt) = (rE − rA)Z dt+ σZ dW̃ .

15. c. The number of steps required should not increase by more than one or two.

Once it is close to the to be computed value, Newton’s method is really fast.

B.4 Exercises from Chapter 4

1. The BS model under the measure QS is given by (see (4.41)

dSt = (r + σ2)St dt+ σSt dWt

where Wt is a Brownian motion under QS . From the standard solution formula for

geometric Brownian motion, it follows that

ST = S0 exp
(
(r + 1

2σ
2)T + σ

√
T Z
)
, Z

QS∼ N(0, 1).

We have ST > K in case Z > −d1, with d1 as in (3.50b). Let C0 denote the time-0

price of the digital option. By the numéraire-dependent pricing formula, we have

C0

S0
= EQS

[
1ST>K

ST

]

=
1√
2π

∫ ∞
−d1

S−1
0 exp

(
−(r + 1

2σ
2)T − σ

√
T z
)

exp(−1
2z

2) dz

=
e−rT

S0

√
2π

∫ ∞
−d1

exp
(
−1

2

(
z + σ

√
T
)2 )

dz

=
e−rT

S0
Φ(d2).

From this it follows that C0 = e−rTΦ(d2).

3. a. First rewrite the model under the risk-neutral measure associated to the

money market account M . The relative drift of all traded assets is then equal to

the short rate. Therefore the model becomes

dSt = rSt dt+ σSt dW
M
1,t
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dFt = rFt dt+ σ1Ft dW
M
1,t + σ2Ft dW

M
2,t

dBt = rBt dt

where WM
1,t and WM

2,t are Brownian motions under the risk-neutral measure. Next,

from the change-of-numéraire formula

µNC = µMC + σC
σ>N
πN

we get in this case (N = S):

µSS = rS +
[
σS 0

] [σS
0

]
1

S
= (r + σ2)S

µSF = rF +
[
σ1F σ2F

] [σS
0

]
1

S
= (r + σσ1)F.

The model becomes

dSt = (r + σ2)St dt+ σSt dW
S
1,t

dFt = (r + σσ1)Ft dt+ σ1Ft dW1,t + σ2Ft dW
S
2,t

dBt = rBt dt

where WS
1,t and WS

2,t are Brownian motions under the equivalent martingale measure

that corresponds to taking the stock price St as the numéraire.

b. Let Ct denote the contract value at time t. By the numéraire-dependent pricing

formula:
C0

S0
= EQS

[
CT
ST

]
= EQS

[
max(1, FT /ST )

]
.

From Itô’s rule, we get:

d(logSt) = (r + 1
2σ

2) dt+ σ dWS
1,t

d(logFt) =
(
r + σσ1 − 1

2(σ2
1 + σ2

2)
)
dt+ σ1 dW

S
1,t + σ2 dW

S
2,t.

The distribution of FT /ST under QS is therefore given by

FT /ST = (F0/S0) exp
((
σ1σ − 1

2(σ2 + σ2
1 + σ2

2)
)
T +

√
(σ1 − σ)2 + σ2

2

√
T Z

)
where Z is standard normal. The value of the contract at time 0 can now be written

as (defining σ̄ :=
√

(σ1 − σ)2 + σ2
2 )

C0 =
1√
2π

∫ ∞
−∞

max
(
S0, F0 exp(−1

2 σ̄
2T + σ̄

√
T z)

)
exp(−1

2z
2) dz.
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r = 0.04; sigma = 0.2; T = 1; S0 = 100; K = 100;

F = @(z) max(S0*exp((r-0.5*sigma^2)*T + sigma*sqrt(T)*z)-K,0);

% --- part a. ---

N = 5; Ze = 4; a = pi/(2*Ze); [G,g] = BF(a,N); % basis functions

Zt = -Ze:Ze; coeffs = BM(G,Zt)\F(Zt)’; % regression

Zm = -6:0.1:6; figure(1); plot(Zm,F(Zm),Zm,BM(G,Zm)*coeffs,’--’)

approxval = g*coeffs;

d1 = @(S0) (log(S0/K)+(r+0.5*sigma^2)*T)/(sigma*sqrt(T)); % \

d2 = @(S0) (log(S0/K)+(r-0.5*sigma^2)*T)/(sigma*sqrt(T)); % BS

exactval = @(S0) S0.*normcdf(d1(S0))-exp(-r*T)*K*normcdf(d2(S0)); % /

disp([’approximate value (N=’ num2str(N) ’): ’ num2str(approxval)])

disp([’exact value: ’ num2str(exactval(S0))])

% --- part b. ---

fn = @(eta) g * RM(a*log(eta)/sigma*sqrt(T),N) * coeffs;

etas = 0.6:0.01:1.4;

approxvals = zeros(size(etas)); % reserve memory space

for k = 1:length(etas)

approxvals(k) = fn(etas(k));

end

figure(2); plot(etas*S0,exactval(etas*S0),etas*(S0),approxvals,’--’)

Code Example B.3: Code for Exc. 8. The code uses auxiliary functions BF, BM and RM as
shown in Code Examples B.4, B.5 and B.6.

Define d1 and d2 by

d1 =
log(F0/S0) + 1

2 σ̄
2T

σ̄
√
T

, d2 =
log(F0/S0)− 1

2 σ̄
2T

σ̄
√
T

.

Then we can write

C0 =
1√
2π

∫ −d2

−∞
S0 exp(−1

2z
2) dz +

1√
2π

∫ ∞
−d2

F0 exp
(

1
2(z − σ̄)2

)
dz

= S0Φ(−d2) + F0Φ(d1).

In particular, if F0 = S0, then d2 = −d1 and the value of the contract is given by

C0 = 2Φ
(
σ̄
√
T
)
S0.

8. A possible code for parts a. and b. is shown in Code Example B.3. There is

no claim that the computational parameters used in the example code are optimal.

Graphical output is shown in Fig. B.10.
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function [ G, g ] = BF(a,N)

%BF Basis functions and corresponding expectations. N must be odd.

G = cell(1,N); g = zeros(1,N);

G{1} = @(Z) 1; g(1) = 1;

for k = 1:(N-1)/2

G{2*k} = @(Z) sin(a*k*Z);

G{2*k+1} = @(Z) cos(a*k*Z);

g(2*k+1) = exp(-0.5*a^2*k^2);

end

Code Example B.4: Auxiliary function for code shown in Code Example B.3.

function bmatrix = BM(G,Z)

%BM Basis functions evaluated in points in Z.

bmatrix = zeros(length(Z),length(G));

for k = 1:length(G)

bmatrix(:,k) = G{k}(Z);

end

Code Example B.5: Auxiliary function for code shown in Code Example B.3.

function R = RM(x,N)

%RM Rotation matrix of size N. N must be odd.

R = zeros(N);

R(1,1) = 1;

for k = 1:(N-1)/2

R(2*k,2*k) = cos(k*x);

R(2*k,2*k+1) = -sin(k*x);

R(2*k+1,2*k) = sin(k*x);

R(2*k+1,2*k+1) = cos(k*x);

end

Code Example B.6: Auxiliary function for code shown in Code Example B.3.
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Figure B.10: Graphical output for Exc. 8. The left panel shows the approximation of the
function F (z) (payoff function in terms of a standard normal variable) by a linear combina-
tion of five basis functions. The right panel shows the corresponding approximation of the
option value at time 0 as a function of the time-0 value of the underlying. In both panels,
the drawn curve represents the exact values, and the dashed curve is the approximation.
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B.5 Exercises from Chapter 5

1. Differentiate both sides of the equality∫ T

0
P (t) dt =

1− P (T )

S(T )

with respect to T .

3. a. From the balancing rule (5.85) it follows that the amount received by mr. Bald-

ing at time T1 is

b1T1
= αT1b

1
0 =

AT1

PT1(T1)b10 + PT1(T2)b20
b10 =

AT1

1 + ηP0(T1)PT1(T2)/P0(T2)
(B.1)

where η := A2
0/A

1
0. Since the process Pt(T2)/Pt(T1) is a martingale under the T1-

forward measure, we have

P0(T2)

P0(T1)
= EQT1

PT1(T2)

PT1(T1)
= EQT1PT1(T2). (B.2)

In particular, if PT1(T2) is deterministic as seen from time 0, then PT1(T2) =

P0(T2)/P0(T1) (as can also be inferred from a direct arbitrage argument). The

expression (B.1) can then be rewritten as b1T1
= AT1/(1 + η). Since the time-0

value of the amount AT1 paid at time T1 is A0, it follows that the time-0 value of

mr. Balding’s benefit is A0/(1 + η) = A1
0.

b. On the basis of the assumption of independence and (B.1), the time-0 value of

the amount received by mr. Balding is

P (0, T1)b1T1
= P (0, T1)EQT1

[
AT1

1 + ηP0(T1)PT1(T2)/P0(T2)

]

= P (0, T1)EQT1
[
AT1

]
EQT1

[
1

1 + ηP0(T1)PT1(T2)/P0(T2)

]

= A0E
QT1

[
1

1 + ηX

]

where X := P0(T1)PT1(T2)/P0(T2) is a positive random variable that satisfies

EQT1X = 1 by (B.2). The function f(x) = 1/(1 + ηx) is strictly convex for x > 0

and η > 0. It follows that

EQT1

[
1

1 + ηX

]
>

1

1 + ηEQT1 [X]
=

1

1 + η
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where the strict inequality is due to the assumption that X is not degenerate.

Consequently, the time-0 value of mr. Balding’s benefit is larger than A0/(1 + η) =

A1
0.

4. a. The assumption that the short rate is constant in time under the real-world

measure implies that it is also constant in time under the risk-neutral measure. The

statement therefore follows from (5.23) and (5.2).

b. From the relation Pt(T ) = exp(−rt(T − t)), it follows by Itô’s formula that

dPt(T ) = exp(−rt(T − t))[−(T − t) drt + rt dt] + 1
2 exp(−rt(T − t))(T − t)2σrσ

>
r

which implies

µT = πT
[
rt − (T − t)µr + 1

2(T − t)2σrσ
>
r

]
.

The no-arbitrage condition µT = rπT therefore implies

−(T − t)µr + 1
2(T − t)2σrσ

>
r = 0 ⇒ µr = 1

2(T − t)σrσ>r .

Since this relation must hold for all T and t ≤ T whereas µr and σr do not depend on

T , it follows that σrσ
>
r = 0 and µr = 0. Because σr is a row vector, we have σrσ

>
r =∑k

i=1(σr)
2
i so that from σrσ

>
r = 0 it follows that in fact σr = 0. Consequently, rt is

constant.

5. Suppose for instance that RT1(T2) < F0(T1, T2). At time 0, buy a bond with face

value P0(T1)/P0(T2) that matures at time T2, and sell a bond with face value 1 that

matures at time T1. The total cash outlay for these two transactions is 0. At time

T1, the value of the second bond is 1, and the value of the first bond according to

the prescribed scenario is

PT1(T2)
P0(T1)

P0(T2)
= exp

(
−RT1(T2)(T2 − T1)

) P0(T1)

P0(T2)

> exp
(
−F0(T1, T2)(T2 − T1)

) P0(T1)

P0(T2)
= 1

where in the last step the definition of the forward rate is used. Meeting the obliga-

tion from the second bond and cashing in the proceeds from selling the second bond

at time T1 leaves an immediate profit. If RT1(T2) > F0(T1, T2), then an arbitrage is

constructed in a similar way, replacing “buy” by “sell” and vice versa.

To show that no arbitrage is possible in case the prescribed scenario is such

that RT1(T2) = F0(T1, T2) for all T2 ≥ T1, consider the deterministic model in

which the evolution of the short rate is prescribed by rt = F0(t), where F0(T ) is

the instantaneous forward rate that holds in the market at time 0. From (5.23) it
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follows that the arbitrage-free bond prices in this model are given by

Pt(T ) = exp
(
−
∫ T

t
F0(s) ds

)
= exp

(∫ T

t

d

ds
logP (s) ds

)
= exp

(
logP0(T )− logP0(t)

)
=
P0(T )

P0(t)
.

Since P0(0) = 1, this shows in particular that the bond prices from the model are

consistent with currently observed bond prices. The yield curve at time t is given

by

Rt(T ) =
−1

T − t
logPt(T ) = − logP0(T )− logP0(t)

T − t
=
TR0(T )− tR0(t)

T − t
= F0(t, T )

where (5.6) is used in the last step. This evolution of the yield curve does not admit

arbitrage, since it is derived from an arbitrage-free model.

10. a. Since at time t the portfolio that constitutes the constant-maturity bond

consists fully of bonds with maturity t + T , and the portfolio is self-financing, the

volatility of the constant-maturity bond at time t is equal to the volatility of the

bond with maturity t + T times the number of those bonds held in the portfolio.

Therefore,

dVt = h(t,Xt)Vt dt+
∂πt+T
∂x

(t,Xt)σX(t,Xt)
1

πt+T (t,Xt)
Vt dWt (B.3)

where the drift term follows from (3.80).

b. Using the Vasicek bond pricing formula as given in (4.66), one finds from (B.3)

dVt = rtVt dt−
1− e−aT

a
σVt dWt (B.4)

where Wt is a Brownian motion under the risk-neutral measure and rt follows (4.64).

If the price of risk λ in the Vasicek model is constant, then the corresponding model

under the real-world measure P is

dVt =
(
rt −

1− e−aT

a
σλ
)
Vt dt−

1− e−aT

a
σVt dWt

where now Wt denotes a P-Brownian motion.

B.6 Exercises from Chapter 6

1. In four decimals, the smallest (i.e. most negative) eigenvalue of the matrix D,

for matrix size 100, is −3.9990, and the largest is −0.0010. Code Example B.7
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N = 720;

D = -2*eye(N) + diag(ones(1,N-1),-1) + diag(ones(1,N-1),1);

[V,~] = eig(D);

for i = 1:N

plot(V(:,i)); pause(0.1)

end

Code Example B.7: Approximate eigenfunctions of the second order differential operator.
The effect of the presentation relies on Matlab’s habit of presenting the eigenvalues in order
of magnitude.

shows all of the eigenvectors for matrix size 720, in rapid succession. The sinu-

soidal appearance is related to the fact that the solutions of the differential equation

y′′(x) = λy(x), for λ < 0, are of the form y(x) = a sin
(√
−λx+ b

)
where a and b are

arbitrary constants.

2. Taking n = 4 as an example, one can write

x>Dx =
[
x1 x2 x3 x4

]

−2 1 0 0

1 −2 1 0

0 1 −2 1

0 0 1 −2



x1

x2

x3

x4


= −2x2

1 + 2x1x2 − 2x2
2 + 2x2x3 − 2x2

3 + 2x3x4 − 2x2
4

= −x2
1 − (x1 − x2)2 − (x2 − x3)2 − (x3 − x4)2 − x2

4.

It is seen that x>Dx < 0 for all x ∈ R4 with x 6= 0. The corresponding statement for

general n follows in the same way. Consequently, the matrix is D is negative definite,

so that all eigenvalues must be less than 0. By similar reasoning one finds that D+4I

is positive definite; this means that all eigenvalues of D+4I are positive, or in other

words that all eigenvalues of D are larger than −4. The second claim follows by

noting that, for x = 1, x>Dx/x>x = −2/
√
n and x>(D + 4I)x/x>x = 2/

√
n. (By

using suitable other vectors than x = 1, sharper bounds can be obtained.)

B.7 Exercises from Chapter 7

2. b. The averaging that takes place in the Asian option effectively lowers the

volatility, which suggest that the price of the Asian option should be less than that

of its European counterpart. Indeed, the value of the Asian option is found to be

approximately 5.04, as opposed to the European option value which is 8.92. The

width of the confidence interval with n = 105 is approximately 0.1; to reduce this to

0.01 (not taking into account the time discretization error), one needs approximately

100 times more simulations.
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r = 0.02; sigma = 0.2; T = 1; S0 = 100; K = 100; N = 100; dt=T/N;

% --- pilot sample ---

M = 10^3; S = S0; W = 0; Ac = S0;

for k = 1:N

dW = sqrt(dt)*randn(M,1); dS = r*S*dt + sigma*S.*dW;

S = S + dS; W = W + dW; Ac = Ac + S;

if k == N/2; hW = W; end

end

A = Ac/(N+1); F = exp(-r*T)*max(A-K,0);

coef = [ones(size(W)) hW hW.^2 W W.^2 ]\F; % regression

coeff = coef(2:end);

% --- actual sample ---

M = 10^5; S = S0; W = 0; Ac = S0;

for k = 1:N

dW = sqrt(dt)*randn(M,1); dS = r*S*dt + sigma*S.*dW;

S = S + dS; W = W + dW; Ac = Ac + S;

if k == N/2; hW = W; end

end

A = Ac/(N+1); Fnc = exp(-r*T)*max(A-K,0);

ECV = [ 0 0.5*T 0 T ]; % expectations of control variates

Fcv = Fnc - [hW hW.^2 W W.^2 ]*coeff + ECV*coeff;

disp([’raw MC: ’ num2str(mean(Fnc)) ’ +/- ’ ...

num2str(1.96*std(Fnc)/sqrt(M))])

disp([’with control variates: ’ num2str(mean(Fcv)) ’ +/- ’ ...

num2str(1.96*std(Fcv)/sqrt(M))])

Code Example B.8: Script for Exc. 7.5.2.e.

c. The correlation coefficient is approximately 0.83. The use of the European option

as a control variate should therefore reduce the confidence interval by a factor close

to 2.

e. See the script in Code Example B.8. The confidence interval is reduced by

approximately a factor 3 compared to Monte Carlo without control variates.

f. Hardly any improvement.

g. The variance-covariance matrix is

ΣY Y =


1
2T 0 1

2T 0

0 1
2T

2 0 1
2T

2

1
2T 0 T 0

0 1
2T

2 0 2T 2

 .

However, the effort that goes into computing this matrix does not appear to pay off.

Note that the variance as a function of the coefficients is quadratic and so is rather

flat near the optimal values; therefore the coefficients can still produce a value close

to the minimum even when they are not estimated very accurately. Moreover, only

the matrix ΣY Y is known exactly; the vector ΣXY still needs to be estimated.
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3. a. The coefficients αj (j = 1, . . . , k) are defined by

αj =

∑n
i=1(xji − x̄j)(yi − ȳ)∑n

i=1(yi − ȳ)2
(B.5)

where

x̄j =
1

n

n∑
i=1

xji , yi =

k∑
j=1

cjx
j
i , ȳ =

1

n

n∑
i=1

yi. (B.6)

Whether the draws xij that are used in (B.5) are from a pilot sample or not, the

relations (B.6) imply that
∑k

j=1 cj(x
j
i − x̄j) = yi− ȳ, and hence that the coefficients

αj that are defined by (B.5) satisfy
∑k

j=1 cjαj = 1. Consequently,

k∑
j=1

cj x̂
i
j =

k∑
j=1

cjx
i
j −

k∑
j=1

cjαj

(
k∑
j=1

cjx
i
j − EY

)
= EY.

Since this is a linear relation which holds for all samples separately, the same relation

holds as well for the sample averages, as stated in (7.35).

b. A typical answer is: Beneficiary 20.55 ± 0.10, Charity 10.21 ± 0.14, Sponsor

12.48± 0.09.

c. No value at time 0 is created or destroyed by the formulation of the fund policy;

the policy just determines the distribution of value between the parties involved and

the fund’s final value. Therefore the time-0 values of the payments received (or paid,

when occurring with a negative sign), plus the time-0 value of the fund’s assets at

time T , must sum to the initial value of the fund. To verify that this equation is

satisfied within the limits of Monte Carlo accuracy, form a Monte Carlo estimate of

the random variable that is formed by taking the the cumulative benefits received

by the Beneficiary plus the payment received by Charity minus the contribution of

the Sponsor (all discounted to time 0), and check whether the confidence interval

contains S0 − e−rTL with S0 = 100, r = 0.02, T = 10, L = 100.

d. A typical answer is: Beneficiary 20.50 ± 0.05, Charity 10.15 ± 0.07, Sponsor

12.52±0.06. The use of the control variate results in a substantial reduction of each

of the three confidence intervals. Moreover, the point estimates are now such that

the relation of part c. is satisfied. For a script, see Code Example B.9.

4. See the script in Code Example B.11. Graphical output is shown in Fig. B.11.

In part c., keep an eye on the size of the regression coefficients, in order to avoid

situations in which a very large number (regression coefficient) is multiplied by a

very small number (expectation associated to the corresponding basis function).

Such situations are numerically sensitive and may lead to large errors, in spite of

the correctness of the calculation if it could be carried out in infinite precision.
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% pilot sample

Mp = 10^4; [ CB PC SC Y ~ ] = FundSim(Mp);

CVM = cov([Y CB PC SC]);

a_CB = CVM(1,2)/CVM(1,1);

a_PC = CVM(1,3)/CVM(1,1);

a_SC = CVM(1,4)/CVM(1,1); % or use a_SC = a_CB + a_PC - 1

% actual calculation

Mc = 10^5; [ CB PC SC Y EY ] = FundSim(Mc);

CBcv = CB - a_CB*(Y - EY);

PCcv = PC - a_PC*(Y - EY);

SCcv = SC - a_SC*(Y - EY);

disp([’beneficiary: ’ num2str(mean(CBcv)) ...

’ +/- ’ num2str(1.96*std(CBcv)/sqrt(Mc))])

disp([’charity: ’ num2str(mean(PCcv)) ...

’ +/- ’ num2str(1.96*std(PCcv)/sqrt(Mc))])

disp([’sponsor: ’ num2str(mean(SCcv)) ...

’ +/- ’ num2str(1.96*std(SCcv)/sqrt(Mc))])

Code Example B.9: Script for Exc. 7.5.3.a. For the function FundSim, see Code Example
B.10.

function [ CB PC SC Y EY ] = FundSim(M)

%FundSim Fund simulation results in BS model

r = 0.02; sigma = 0.15; S0 = 100; L = 100; T = 10; dt = 1;

ben = @(S) (S>=95).*(S<105).*0.02.*S + (S>=105).*0.04.*S;

S = S0; B = 1; CB = 0; % cumulative benefits

for t = 0:dt:T-dt

S = S.*exp((r-0.5*sigma^2)*dt+sigma*sqrt(dt)*randn(M,1));

B = B*exp(r*dt);

benefit = ben(S);

S = S - benefit;

CB = CB + benefit/B; % discount to time 0

end

SC = max(L-S,0)/B; % sponsor contribution, discounted to time 0

PC = max(S-L,0)/B; % payment to charity, discounted to time 0

Y = CB + PC - SC;

EY = S0 - exp(-r*T)*L;

Code Example B.10: Function used in Code Example B.9.

7. a. The random variable Φ(Z) takes values in [0, 1], and for 0 ≤ z ≤ 1 we have

P (Φ(Z) ≤ z) = P (Z ≤ Φ−1(z)) = Φ(Φ−1(z)) = z. Furthermore,

E[f ′(Φ(Z))] =

∫ ∞
−∞

f ′(Φ(z))φ(z) dz =

∫ 1

0
f ′(y) dy = f(1)− f(0)

where the substitution y = Φ(z) has been used.

d. See Fig. 7. In the case of f(x) = x0.1, a large part of the contribution to

E[f ′(Φ(Z))] comes from samples in a region that is very far in the tail of the standard

normal distribution.
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r = 0.02; sigma = 0.2; T = 1; S0 = 100; K = 100;

ST = @(z) S0*exp((r-0.5*sigma^2)*T + sigma*sqrt(T)*z);

F = @(z) max(ST(z)-K,0); % payoff

N = 7; Ze = 5; npts = 11; a = pi/(2*Ze); [G,g] = BF(a,N);

Zt = linspace(-Ze,Ze,npts); coeffs = BM(G,Zt)\F(Zt)’; % regression

M = 10^5; Zm = randn(M,1);

V = exp(-r*T)*(F(Zm) - BM(G,Zm)*coeffs + g*coeffs);

disp([’N = ’ num2str(N) ’, npts = ’ num2str(npts)])

disp([’value = ’ num2str(mean(V)) ’ +/- ’ num2str(1.96*std(V)/sqrt(M))])

Zx = linspace(-1.5*Ze,1.5*Ze);

figure(1); plot(Zx,F(Zx),Zx,BM(G,Zx)*coeffs,’--’)

figure(2); plot(F(Zm),BM(G,Zm)*coeffs,’.’,[0 150],[0 150])

xlabel(’payoff’); ylabel(’control variate’)

Code Example B.11: Script for Exc. 7.5.4. For the auxiliary functions BF and BM that
are used in the code, see code examples B.4 and B.5.
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Figure B.11: Graphical output for Exc. 7.5.4.
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Figure B.12: Graphical output for Exc. 7.5.7.d. The left panel is for f(x) = x0.5, the right
panel is for f(x) = x0.1. In both panels, the drawn curve represents the density φ(z) of the
standard normal distribution, and the dashed curve represents the function f ′(Φ(z))φ(z).
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Appendix C

Memorable formulas

This is a list of formulas that are candidates for commitment to memory. The

following notational conventions are used:

C price of a single asset

Y vector of asset prices

V portfolio value

φ vector of portfolio holdings

M money market account

N general numéraire

X general random variable (not necessarily an asset price)

Z martingale.

C.1 Financial Models

C0

N0
= EQN

[
CT
NT

]
(NDPF)

µC − rπC = σCλ (BSE)

{
V = φ>Y

dV = φ>dY
(SFP)

[
σC πC

]
= φ>

[
σY πY

]
(RR)

µNC/N = 0 (FTAP)
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Stochastic Calculus Memorable formulas

dMt = rtMt dt (MMA)

dWM = λ dt+ dW P (MPoR)

dWN = dWM −
σ>N
πN

dt (CoN)

µNX = µMX + σX
σ>N
πN

(CoD)

µMC = rπC (DURNM)

µNC = rπC + σC
σ>N
πN

(DUGN)

C.2 Stochastic Calculus

XT −X0 =

∫ T

0
dXt (TR)

d(f(X)) = f ′(X) dX + 1
2f
′′(X) d[X,X] (IF)

d(f(t,X)) =
∂f

∂t
dt+

∂f

∂x
dX + 1

2

∂2f

∂x2
d[X,X] (TIF)

d(f(X,Y )) =
∂f

∂x
dX +

∂f

∂y
dY + 1

2

(∂2f

∂x2
d[X,X] + 2

∂2f

∂x∂y
d[X,Y ] +

∂2f

∂y2
d[Y, Y ]

)
(BIF)

d[W,W ] = dt (QVBM)

d[X,X] = σ2
X dt (QV)

d[X,Y ] = σXσY ρ dt (QC)

Et1 [Zt2 ] = Zt1 (MP)
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Memorable formulas Stochastic Differential Equations

E

[∫ T

0
Xt dZt

]
= 0 (YCBTS)

∫ T

0
f(t) dWt ∼ N

(
0,

∫ T

0
f(t)2 dt

)
(SIDI)

{
dθ = −θ λ>dW

dW̃ = λ dt+ dW
(GT)

C.3 Stochastic Differential Equations

dXt = µXt dt+ σXt dWt ⇒ XT = X0 exp
(
(µ− 1

2σ
2)T + σWT

)
(GBM)

dXt = −aXt dt+ σ dWt ⇒ XT = e−aTX0 +

∫ T

0
e−a(T−t)σ dWt (LSDE)

C.4 Term Structure

P (T ) = EQM

[
exp

(
−
∫ T

0
rt dt

)]
(BPF)

R(T ) = − 1

T
log P (T ) (DF2YC)

F (T ) = − d

dT
log P (T ) (DF2FC)
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Key to acronyms Memorable formulas

C.5 Key to acronyms

BIF Bivariate Itô Formula

BPF Bond Pricing Formula

BSE Black-Scholes Equation (assets only)

CoD Change of Drift (all variables)

CoN Change of Numéraire

DF2FC Discount Factor to Forward Curve

DF2YC Discount Factor to Yield Curve

DUGN Drift Under General Numéraire (assets only)

DURNM Drift Under Risk-Neutral Measure (assets only)

FTAP Fundamental Theorem of Asset Pricing (assets only)

GBM Geometric Brownian Motion

GT Girsanov Theorem

IF Itô Formula

LSDE Linear Stochastic Differential Equation

MMA Money Market Account

MP Martingale Property

MPoR Market Price of Risk

NDPF Numéraire-Dependent Pricing Formula

QC Quadratic Covariation

QV Quadratic Variation

QVBM Quadratic Variation of Brownian Motion

RR Replication Recipe

SIDI Stochastic Integral with Deterministic Integrand

SFP Self-Financing Portfolio

TIF Time-dependent Itô Formula

TR Telescope Rule

YCBTS You Can’t Beat The System
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Appendix D

Notation

General notational convention: dependence on time is indicated by a subscript in

the case of stochastic process (as in Xt), and by round brackets in the case of

deterministic functions (as in f(t)).

1 vector with entries all equal to 1

1A random variable that takes the value 1 when event A occurs, and which
is 0 otherwise

B(n, p) binomial distribution

Bt value of bond (riskless savings account) at time t

Ct option price at time t

d differential; parameter in binomial tree model representing a “down”
move

d1 parameter in option pricing formulas

d2 parameter in option pricing formulas

E expectation of a random variable

Et conditional expectation given information up to time t

EQ expectation under the measure Q
H(t) variance-covariance matrix for the value taken by a given stochastic

process at time t (used in particular for Gaussian processes)

I identity matrix

J number of successes in a repeated Bernoulli trial

k number of Brownian motions in a state space model; also in use as a
discrete time index, and as generic natural number

m number of assets; also in use as a generic natural number

M generic matrix; in numerical algorithms, also used as a number

Mt money market account

n number of state variables; also in use as a generic natural number
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Notation

N set of natural numbers {1, 2, . . . }
N(µ, σ2) normal distribution

Nt value of numéraire at time t

o order symbol: f(x) = o(g(x)) (x→ a) means that f(x)/g(x) tends to 0
as x tends to a

O order symbol: f(x) = O(g(x)) (x → a) means that f(x)/g(x) remains
bounded as x tends to a

P generic probability measure

P real-world probability measure

Q generic probability measure

Q pricing measure

r constant interest rate

rt short rate

R set of real numbers

St value of a single asset at time t

t continuous time

T final time, time of expiry

u parameter in binomial tree model representing “up” move

Vt portfolio value at time t

Wt standard scalar or vector Brownian motion; lies in Rk

Xt vector of state variables at time t; lies in Rn. Also in use as generic
stochastic process

Yt vector of asset prices at time t; lies in Rm. Also in use as generic
stochastic process

Z set of integers {. . . ,−1, 0, 1, . . . }

cov covariance

std standard deviation

tr trace (sum of the diagonal elements of a matrix)

var variance

Γ(z) gamma function

Γ(z, w) upper incomplete gamma function

∆ forward difference

∆t length of a (small) time interval

θ parameter in time-stepping scheme; parameter in a pricing model

θt Radon-Nikodym process

λ market price of risk; also in use as eigenvalue

λt market price of risk process
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µ relative drift

µX drift of the vector of state variables

µY drift of the vector of asset prices

ν combination of assets used in defining a numéraire

π price; also in use as 3.14159 · · ·
Π partition

ρ correlation coefficient

σ relative volatility; also used for standard deviation

Σ variance-covariance matrix; also used as summation symbol

φ(x) standard normal density function

Φ(x) standard normal cumulative distribution function

φt vector of portfolio holdings at time t; lies in Rm

[X,X]t quadratic variation process corresponding to a given semimartingale Xt

[X,Y ]t quadratic covariation process corresponding to given semimartingales
Xt and Yt

:= left hand side is defined as right hand side

=: right hand side is defined as left hand side

∼ indicates the distribution of a random variable

f(x)
∣∣
x=a

function f(x) evaluated at x = a; alternative notation for f(a)

∝ proportionality symbol; f ∝ g, or f(x) ∝ g(x), means that there is a
constant c such that f(x) = cg(x) for all x

A> transpose of the matrixA; same notation is used for transposes of vectors

⊥ orthogonality: x ⊥ y, for x, y ∈ Rn, means x>y = 0, i.e.
∑n

i=1 xiyi = 0

colspA linear space spanned by the columns of the matrix A

|Π| mesh of a partition Π (maximum distance of points in Π)
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Appendix E

Matlab commands

Code examples in this book are stated in Matlab. To facilitate readability of these

examples for non-Matlab users, a brief explanation of the most relevant commands

is given below.

E.1 General features

Square brackets are used to form vectors or matrices. Round brackets are used for

function arguments and for entries of vectors or matrices. Curly brackets are used

for entries in cell arrays, which are matrices of objects that may be of any type.

It is a peculiarity of Matlab that commands write their output on the screen

unless the command line is terminated by a semicolon ;. The semicolon can also

be used to place several commands on the same text line, and to separate rows in

specifications of matrices. Elements of rows can be separated by commas or just

by spaces. Single quotes ’ are used to form strings of alphanumeric symbols, as in

’hello world’. They are also used to indicate transpose; A’ is the transpose of

the matrix A. The colon : is used to form sequences; for instance 0:3 is the same

as [0 1 2 3], and 1:0.25:2 is the same as [1 1.25 1.5 1.75 2].

Many operations in Matlab can be carried out elementwise on vectors and ma-

trices. This includes logical operations; for instance, if x is a vector of real numbers,

then y = x>0 defines a vector y whose entries are 1 or 0 depending on whether the

corresponding entry in x is positive or not.

Matlab allows subscript indexing of matrices as well as linear indexing. In the

latter, the entries of the matrix are numbered consecutively, columnwise. For in-

stance, in a matrix A of size 3× 5, A(1,3) is the same as A(7). Logical indexing is

allowed as well; for instance the command x(x<0)=0 replaces all negative elements

of the vector x by zeros.

The codeword function at the beginning of a Matlab file indicates a function file.

Function files cannot be executed as such, but they can be called from a script file.

The first line of the file specifies the name of the function, inputs, and outputs. If

there are multiple output variables, their names are placed between square brackets.
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E.2 Specific operations and commands

* matrix multiplication and matrix-vector multiplication

.* element-by-element multiplication of vectors or matrices of equal
size

/ division

./ element-by-element division of vectors or matrices of equal size

^ power

.̂ element-by-element power; for instance [2 3].̂ 2 is [4 9]

\ x = A\b solves Ax = b in case A is invertible, and otherwise pro-
vides the least-squares solution; the operation can therefore also be
used for linear regression

@ function specification; for instance f = @(x) x.̂ 2 + 1 defines f

as the function f(x) = x2 + 1, allowing this function to operate
elementwise on vectors

% comment

~ placeholder for unused output arguments

axis define boundaries for horizontal and vertical axes in a plot; axis
square makes the lengths of both axes equal

cov(A) variance-covariance matrix of columns in matrix A

diag(x) diagonal matrix with diagonal given by vector x

diag(x,k) matrix of which the k-th diagonal above the main diagonal is given
by the entries of x, and which otherwise contains zeros; k can be
negative

disp(str) print the string str to the screen

eig(A) compute the eigenvalues of the matrix A; the form [V,D]=eig(A)

computes also the eigenvectors, which are placed in the matrix V

end final index of a vector

eye(n) unit matrix of size n× n
length(x) length of the vector x

linspace(a,b,n) generate an equally-spaced grid from a to b containing n points;
default is n = 100

loglog draw a loglog plot

max elementwise maximum

mean(X) average value of entries of X

min elementwise minimum

normcdf standard normal cumulative distribution function

norminv inverse standard normal cumulative distribution function

normpdf standard normal density function

num2str convert integer or floating-point number to a string

ones(n,m) n×m matrix whose entries are all 1
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pause(t) pause execution for t seconds

plot(X,Y) plot vector Y against vector X; can also be used with multiple
data vectors for the horizontal and vertical axes, for instance
plot(X1,Y1,X2,Y2)

randn(n,m) n×m matrix whose entries are independent standard normal ran-
dom numbers

std(X) standard deviation of entries of X

size(A) size of the matrix A, shown as a vector

sub2ind linear indices corresponding to given subscript indices, for a matrix
of given size; the subscript indices are to be specified as vectors of
equal length

while repeat loop as long as condition is fulfilled

xlabel label for horizontal axis in a plot

ylabel label for vertical axis in a plot

zeros(n,m) n×m matrix whose entries are all 0

The commands normcdf, norminv and normpdf are provided by the Statistics tool-
box. In cases where this toolbox is not available, the following replacements can be
used:

normcdf = @(x) 0.5 + 0.5*erf(x/sqrt(2))

norminv = @(x) sqrt(2)*erfinv(2*x-1)

normpdf = @(x) exp(-0.5*x.̂ 2)/sqrt(2*pi)
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Appendix F

An English-Dutch dictionary of
mathematical finance and
insurance

For the benefit of Dutch-speaking students, this small dictionary provides transla-
tions of some technical terms that arise in mathematical finance and insurance. Not
for every English term there is a standard translation; nonstandard translations are
indicated by [ns].

above par boven pari (koers hoger dan
nominale waarde)

adapted aangepast (proces)
agent subject, actor [ns]
annualized return rendement op jaar-
basis

arbitrage id.
arbitrage opportunity arbitragemo-
gelijkheid

asset actief, bezitting, waardedrager
[ns]

assets activa
at par à pari (koers gelijk aan nominale
waarde)

at the money op de rand van het uit-
betalingsgebied [ns]

auction veiling
basis point basispunt (1/100 van een
procentpunt)

bear market neergaande markt
below par beneden pari (koers lager
dan nominale waarde)

benchmark richtpunt [ns]
bond obligatie
borrow lenen (van); vgl. lend
boundary condition randvoorwaarde
Brownian motion Brownse beweging
bull market opgaande markt

calculus id.
call option kooprecht [ns]
chain rule kettingregel
collateral onderpand
commodities gebruiksgoederen
complete market volledige markt
contingent claim contract met toe-
standsafhankelijke uitbetaling [ns]

continuous continu
continuous-time in continue tijd, met
continue tijdsparameter. Continuous-
time Markov process: Markov-proces
met continue tijdsparameter

contribution bijdrage; premie (voor
een pensioenfonds)

convergence convergentie
convergence in quadratic mean
convergentie in kwadratisch gemid-
delde

convertible converteerbaar
corporate bond bedrijfsobligatie
corporate finance ondernemingsfi-
nanciering

coupon id.; tussentijdse rentebetaling
op een obligatielening

currency munt, geldeenheid, valuta
debt servicing afbetaling van schulden
default (zn.) faillissement; (ww.) ver-
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zaken, niet nakomen
defined benefit plan uitkeringsrege-
ling

defined contribution plan premiere-
geling

derivative derivaat, afgeleid instru-
ment; afgeleide (van een functie)

difference equation differentieverge-
lijking

differential equation differentiaalver-
gelijking

discount (zn.) korting, afslag; (ww.)
verdisconteren. Sell at a discount : ver-
kopen voor een prijs die lager ligt dan
een gegeven standaardwaarde

discount rate verdisconteringsvoet
drift trend [ns]
endowment dotatie, ter beschikking
gesteld kapitaal

endowment fund vermogensfonds
equation vergelijking
equilibrium evenwicht
equity aandelen
exchange rate wisselkoers
expectation verwachting (van een
stochast)

expiry afloop (van een contract)
exposure gevoeligheid (voor een risico-
factor)

filtration filtratie
finance financiering
finite difference method eindige dif-
ferentiemethode

finite element method eindige ele-
mentenmethode

fixed-income market obligatiemarkt
funding ratio dekkingsgraad
future termijncontract
futures market termijnmarkt
gilt Britse staatsobligatie
government bond staatsobligatie
growth rate groeivoet
hedge afdekken (van risico’s)
implied volatility gëımpliceerde vola-
tiliteit

in the money in het uitbetalingsge-
bied [ns]

incomplete market onvolledige markt
increment id.; toename
independent onafhankelijk
inequality ongelijkheid
inflation inflatie
infinity oneindig
initial condition beginvoorwaarde

integer (zn.) geheel getal
interest rente
interest rate rentevoet
kurtosis id., dikstaartigheidsindex
law of large numbers wet van de
grote aantallen

lend lenen (aan); vgl. borrow
liability verplichting
liabilities passiva, verplichtingen
long lang, aan de positieve balanszijde.
The party that is long the contract : de
houd(st)er van het contract

Markov chain Markovketen
Markovian process Markovproces,
proces met de Markov-eigenschap

martingale martingaal
martingale measure martingaalmaat
mature (ww.) aflopen (van een con-
tract)

maturity looptijd, eindvervaldag
median mediaan
moneyness uitbetalingspositie [ns]
mortgage hypotheek
nonlinear niet-lineair
nonnegative niet-negatief
normal distribution normale verde-
ling

number getal; nummer. Real number :
reëel getal

numéraire id.
occupational fund bedrijfstakpensi-
oenfonds

optimize optimaliseren
option optie
orthogonal orthogonaal, loodrecht; x
is orthogonal to y: x staat loodrecht op
y

out of the money buiten het uitbeta-
lingsgebied [ns]

pay-as-you-go system omslagstelsel
payoff uitbetaling
pension plan pensioenregeling
policy ladder staffel
portfolio portefeuille
premium premie; opslag, toeslag. Sell
at a premium: verkopen voor een prijs
die hoger ligt dan een gegeven stan-
daardwaarde

probability kans
probability distribution kansverde-
ling

price (zn.) prijs; (ww.) prijzen, waar-
deren

pricing waardering
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pricing kernel weegfactor [ns]
principal hoofdsom (bij een lening)
put option verkooprecht [ns]
quadratic variation kwadratische va-
riatie

random number toevalsgetal, toe-
valsgrootheid, stochastische grootheid

random variable stochastische vari-
abele, stochast

rebalance herschikken (van een porte-
feuille)

redeem aflossen
redemption aflossing
reinsurance herverzekering
replication replicatie
return rendement
risk risico
riskless risicovrij, risicoloos
risk-neutral risiconeutraal
risky risicodragend; riskant
satiated verzadigd
security vermogenstitel
securitizeverhandelbaar maken [ns]
self-financingzichzelf financierend [ns]
series reeks
series expansion reeksontwikkeling
short kort, aan de negatieve balans-
zijde. The party that is short the con-
tract : de verlener van het contract.

single-period model één-periodemo-
del

skewness scheefheid
smile opkrullend verloop (van de gëım-

pliceerde volatiliteit als functie van de
uitoefenprijs) [ns]

smirk scheef verloop (van de gëım-
pliceerde volatiliteit als functie van de
uitoefenprijs) [ns]

solvency solvabiliteit
solvent solvabel
sovereign staatsobligatie
state toestand
state space toestandsruimte
stationary stationair
stock aandeel
strike uitoefenprijs
swap ruil, i.h.b. van betaling van vas-
te of variabele rente; renteruilovereen-
komst [ns]

swaption renteruiloptie [ns]
tax code belastingwetgeving
test toets
term structure termijnstructuur
terminal condition eindvoorwaarde
time axis tijdas
time to maturity resterende looptijd
Treasury bill / note Amerikaanse
staatsobligatie

underfunded in onderdekking
underlying onderliggende
unit of currency geldeenheid, munt
utility function nutsfunctie
value-weighted naar waarde gewogen
volatility volatiliteit
yield opbrengst, rendement, rente
yield curve rentekromme
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Subject Index

absence of arbitrage, 77, 80, 98

absorbing state, 227, 230

adapted, 23

admissible trading strategies, 78

affine term structure models, 179, 199

American option, 94, 219, 263

annuity factor numéraire, 191

antithetic variables, 251, 271

arbitrage, 77, 78

arbitrage-free price, 79

Asian option, 134, 137, 155, 267

asset, 5

asset-or-nothing option, 131

asymptotically stationary process, 47

at least self-financing, 94

autocovariance, 50

barrier option, 118

basis function, 262

basis point, 200

Bermudan approximation, 219

Bermudan option, 137, 237, 260

bias, 242, 254, 265

binomial distribution, 231

binomial model, 230

Black (1976) model, 190

Black-Scholes equation, 87, 117

Black-Scholes formula, 89, 109, 110,
122

Black-Scholes inequality, 95

Black-Scholes model, 2, 74, 81

Black-Scholes-Vasicek model, 77, 148

bond, 9, 75, 92, 164

bounded variation, 12, 33

Brownian motion, 2, 19

bump and reprice, 252, 256

business cycle, 75

butterfly option, 113

calibration, 103, 177
call option, 88, 122
call-on-a-call, 131
cap, 161
Capital Asset Pricing Model (CAPM),

1, 3, 111
caplet, 161
caption, 161
central difference, 253
central limit theorem, 226
chain rule, 33
change of drift, 54, 251
change of measure, 51, 251
change of numéraire, 96, 128, 148
Cholesky decomposition, 22
collateral, 164
common random numbers, 254
complementarity conditions, 221
complete market, 80, 86
compound option, 131, 137, 156, 235
confidence interval, 32, 240, 256, 270
consol bond, 141
constant-maturity bond, 199
contingent claim, 7
continuous compounding, 145, 160
control variate, 243
convection, 233
convergence in probability, 23
correlated Brownian motions, 21, 69,

75, 97
coupon-paying bond, 160
Cox-Ingersoll-Ross model, 178
Crank-Nicolson scheme, 215, 223
credit default swap, 133
credit risk, 163
credit spread, 164
cubature, 156
curse of dimensionality, 208
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default, 141, 163

delta, 252

delta hedge, 93, 111, 158

deposit, 9, 159

difference quotient, 208

diffusion, 233

digital option, 120, 154, 255

discontinuous payoff, 255

discount bond, 160

discount curve, 164

discount factor, 145, 163, 164

discrete compounding, 145, 160

dividends, 5, 70, 135

domain, 70

doubling strategy, 78

drift, 27, 70

driving process, 28

endowment fund, 141

equilibrium price, 107

equivalent martingale measure, 78,
120

Euler scheme, 28, 62

European option, 94

excess expected return, 105

exchange rate, 114

exercise region, 95, 263

exercise strategy, 263

expectations hypothesis, 172

expiration, 87

explicit scheme, 214, 229

face value, 160

fair price, 79

finite difference, 252

finite-difference method, 207

finite-element method, 208

fixed leg, 163

floating leg, 163

floating rate, 162

floor, 161

floortion, 161

forcing term, 48

forward curve, 166

forward measure, 174

forward rate, 161

forward rate agreement (FRA), 160,
166

forward start option, 137
fundamental theorem of asset pricing,

77, 78, 108
fundamental theorem of calculus, 33

gamma, 252, 259
gamma function, 143
geometric Brownian motion, 39, 44,

75, 251
Girsanov’s theorem, 50, 65, 251
gradient, 71
Greeks (price sensitivities), 252
growth-optimal portfolio, 131

Heath-Jarrow-Morton model, 188
hedging, 92, 245
Heston model, 76
historical volatility, 104, 154
Hull-White model, 184

implicit scheme, 214
implied volatility, 104, 154
importance sampling, 241, 246, 270
in the money, 112
incomplete market, 133
increment, 19
integral transform, 25
integrand, 12, 23, 33
integrator, 12, 23, 33
interest rate, 160
Itô rule, 37

Kolmogorov backward equation, 228

Lévy’s theorem, 65
law of conservation of value, 144, 269
Least-Squares Monte Carlo (LSMC),

259
Leibniz rule, 256
LIBOR market models, 193
likelihood ratio method, 258
Linear Complementarity Problem

(LCP), 223
linear stochastic differential equation,

47, 122
Lipschitz continuity, 255
local martingale, 24
London interbank offered rate (LI-

BOR), 193
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Lyapunov equation, 50

market price of risk, 121
market-consistent price, 79
Markov chain, 223, 226
Markov process, 68
Markovian portfolio strategy, 71
Markovian property, 226
martingale, 23, 78
martingale condition, 23, 230
matrix exponential, 48, 61, 213
modeling under Q, 99
money market account, 84, 172
moneyness, 110
Monte Carlo method, 239
mortgage, 132, 203
multiple driving Brownian motions,

148
multiple payoffs, 132
multivariate Itô rule, 40

Nelson-Siegel parametrization, 170
Nelson-Siegel-Svensson parametriza-

tion, 170
nesting, 240, 260, 261
net present value formula, 132
Newton’s method, 103, 115
notional principal, 162, 191
numéraire, 10, 73
numéraire-dependent pricing formula

(NDPF), 80, 87, 131, 146, 149, 172,
241

numerical integration, 156, 272

option pricing, 87
order of convergence, 242
Ornstein-Uhlenbeck process, 46, 75,

184
out of the money, 112, 248

par coupon rate, 168
par swap rate, 162, 168
par yield, 168
partition, 12
path dependence, 134
pathwise method, 257
payer, 162
payoff, 87, 88
perpetual American put, 139

perpetuity, 141

pilot sample, 244

pivoting, 223

portfolio, 5

price, 5

price of risk, 85, 104

price of time, 84

pricing, 79

pricing kernel, 101, 127, 154, 241

pricing measure, 54

principal, 161

principal minor, 223

principal submatrix, 223

put option, 148

quadratic covariation process, 41

quadratic variation, 35, 62

quadratic variation process, 37

quadrature, 156

quoting convention, 160

Radon-Nikodym derivative, 51, 251

Radon-Nikodym process, 51

random expiry time, 132

random walk, 19, 225

real-world probability measure, 78

rebalancing, 7

receiver, 162

regression, 262

relative price process, 78

replication, 7, 89, 114

replication recipe, 101

reverse mortgage, 133

Riemann-Stieltjes integral, 12

risk-neutral measure, 96, 148, 173

risk-neutral pricing formula, 80

root mean squared error (RMSE), 242

score function, 258

self-financing, 7, 30, 72

semimartingale, 24, 41

short rate, 84, 121, 146, 165

short rate model, 176, 177

short-term funding, 205

shorthand notation, 68, 71

smooth pasting, 96, 140

space discretization, 209

stability, 208, 215
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standard Brownian motion / Wiener
process, 20

standard vector Brownian motion /
Wiener process, 21

state space model, 67
state variable, 67, 134
static hedging, 113
stationary process, 47
stochastic differential equation, 27
stochastic integral, 22
stochastic integral with deterministic

integrand, 40, 44, 48
stochastic product rule, 43
stochastic quotient rule, 82
stochastic volatility, 76, 260
stock, 75, 92
storage costs, 135
straddle, 158
strong order of convergence, 242
subjective discount factor, 106
swap, 162, 200
swap curve, 168
swap measure, 191
swap rate, 162
swaption, 163, 190, 201
symmetric difference formula, 209

Taylor expansion, 208, 253
telescope rule, 9, 24, 33, 72
tenor date, 162
tenor dates, 191
term structure, 159
term structure equation, 178
term structure of interest rates, 145
terminal measure, 194
theta, 252
time discretization, 28, 213
time of maturity, 89, 164

time to maturity, 89, 159, 164
time-dependent Itô rule, 44
total variation, 13
tower law, 26, 227
trace, 71
transaction costs, 5
tree method, 223, 228
trinomial scheme, 235
true martingale, 24
trust fund, 141, 268
two-factor Hull-White model, 187

uniform continuity, 17
unit of currency, 6
utility function, 106

value, 5
value process, 72
vanna, 252
variance reduction, 243
variational inequality, 96, 158
Vasicek model, 77, 121, 145, 178, 179,

200
Vasicek parametrization, 170
vector Brownian motion / Wiener pro-

cess, 20
vector coding, 32
vega, 103, 115, 252, 255
volatility, 27, 70
vomma, 252

warrant, 1
weak order of convergence, 242
Wiener process, 2, 19

yield curve, 148, 165
you can’t beat the system, 26

zero-coupon bond, 145, 159
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Bachelier, Louis, 2, 26
Bernstein, Peter L., 275
Black, Fischer, 1–4, 74, 192
Brown, Robert, 19

Carrière, Jacques F., 265
Cholesky, André-Louis, 22
Christensen, Jens, 276
Cont, Rama, 275
Cox, John C., 178
Crank, John, 215

Décamps, Jean-Paul, 275
Delbaen, Freddy, 24
Dempster, Michael, 276
Diebold, Francis X., 276
Doblin, Vincent, 27
Dybvig, Philip H., 180, 276

Einstein, Albert, 2
Eksi, Zehra, 276
Euler, Leonhard, 29

Fama, Eugene F., 4
Fang, Fang, 276
Feynman, Richard P., 91
Föllmer, Hans, 275
Fourier, Jean-Baptiste Joseph, 123,

275

Gauss, Carl Friedrich, 49
Girsanov, Igor Vladimirovich, 50, 53

Harrison, J. Michael, 4
Heath, David C., 188
Hesse, Ludwig Otto, 71
Heston, Steven, 76
Hull, John C., 184

Ingersoll, Jonathan E., Jr., 178, 180

Isnard, Achylle-Nicholas, 10
Itô, Kiyoshi, 2, 17, 24

Jarrow, Robert A., 188
Jensen, Johan, 198

Kac, Mark, 91
Kolmogorov, Andrey Nikolaevich, 228
Kreps, David M., 4
Kummer, Ernst Eduard, 276

Lagrange, Joseph-Louis, 221
Laplace, Pierre Simon, marquis de,

275
Leibniz, Gottfried Wilhelm, 189
Lévy, Paul Pierre, 65
L’Hôpital, Guillaume François An-

toine, marquis de, 144
Lipschitz, Rudolf, 255
Longstaff, Francis A., 265
Lyapunov, Aleksandr Michailovich, 50

Markov, Andrey Andreyevich, 68
McKean, Henry P., Jr., 2
Mehrling, Perry, 275
Merton, Robert C., 3, 4, 276
Miller, Merton H., 3, 4
Modigliani, Franco, 3
Morton, Andrew, 188

Nelson, Charles R., 170
Newton, Isaac, 103
Nicolson, Phyllis, 215
Nikodym, Otton M., 51

Oosterlee, Cornelis W., 276
Ornstein, Leonard S., 46

Pliska, Stanley R., 4, 276
Poitras, Geoffrey, 275

Rabinovich, Ramon, 276
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Radon, Johann, 51
Rayleigh (John William Strutt, 3rd

Baron Rayleigh), 236
Riemann, Bernhard, 12
Rochet, Jean-Charles, 275
Ross, Stephen A., 178, 180
Rudebusch, Glenn D., 276

Samuelson, Paul A., 2, 3, 39
Schachermayer, Walter, 24
Scholes, Myron S., 1–4, 74
Schwartz, Eduardo S., 265
Siegel, Andrew F., 170
Stentoft, Lars, 276

Stieltjes, Thomas Jan, 12

Svensson, Lars, 170

Taylor, Brook, 208

Thiele, Thorvald, 2

Treynor, Jack L., 1

Uhlenbeck, George E., 46

Vasicek, Oldrich A., 77

Walras, Léon, 10

White, Alan D., 184

Wiener, Norbert, 2, 19, 20
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