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Preface

In the period of 2011-2013 I was a graduate student at the Erasmus
Institute for Philosophy and Economics, and became increasingly in-
terested in the philosophy and methodology of econometrics. I was
able to do this as a result of my teachers and supervisors at the time:
Julian Reiss, Marcel Boumans, Jack Vromen, Conrad Heilmann, at
the philosophy faculty, and my econometrics teacher and supervisor
Nalan Basturk at the economics faculty. Especially Julian Reiss’ course
on the philosophy and methodology of statistics was instrumental in
developingmy thought on the topic. Much of the content in this book
came to me through these teachers.

After this period, my research direction took another course: the
measurement and ethics of value. However, when I got the oppor-
tunity to teach a part of a course on the philosophy of science and
statistics at Tilburg University, I gladly accepted it. I got to revisit my
interest. Because I could find few introductory texts, I decided to write
my own, encouraged by the course coordinatorMichael Vlerick. These
texts developed into this book. I owe much gratitude to the students
who took this course in the previous years. They helped me point out
places in which the explanation was not as clear as it could be, and
corrected many of my type I and type II error confusions. I apologize
in advance to future students for mixing these up.

I also want to thank Matteo Colombo, for reading the book, and
the helpful comments that resulted from this. Finally, I would like to
thank editor Daan Rutten and copy-editor Violet Zagt.
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Introduction

1 • the rheinhart-rogoff controversy

During the Great Recession that lasted from roughly 2009 until 2014,
many governments believed that it was necessary to fight the long-run
impact of the recession through austerity measures: cutting govern-
ment costs. The argument for this was, that high government debts
would have negative consequences for the prosperity of these countries
in the future. The economic reasoning behind this argument was that
if a country’s debtwould become too high relative to its GDP, investors
would no longer believe that country would be able to pay off its loans.
Consequently, the interest rates on these loans would increase, only
making it more difficult to maintain the high level of debt.

In 2009, two Harvest economists, Reinhart and Rogoff, published
a research paper on this issue, having used historical data to estimate
at which point debt will have significant negative effects on economic
growth (Reinhart and Rogoff 2010). Their estimate was around 90%
of GDP, a number many European countries had exceeded or were on
the verge of exceeding. This paper became an influential argument for
austerity measures in these countries, which in turn led to many job
losses and a significant drop in household purchasing power.

Four years later, Thomas Herndon, a graduate student, discovered
that numerous coding errors were made in the usage of the dataset. In
truth, the estimate of the effect of debt on long-run economic growth
should be much lower than Reinhart and Rogoff had thought (Hern-
don, Ash, and Pollin 2014). This paper, which many governments
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4 the philosophy of econometrics

had used to justify cutting governments costs, was simply incorrect.
Of course, we cannot know what would have happened otherwise,
but this error may have very well caused many people to lose their
jobs, many (small) businesses to go bankrupt, and many people on
governments programs to lose their benefits.

This example is one of human error, not necessarily one of an error
in statistical reasoning, but it does illustrate that real-world economics
almost always has high stakes. And real-world economics is almost
always based on statistical reasoning. This shows that good economic
estimates are important, and that errors may result in the very real
loss of jobs, financial security, and even life (Arcà, Principe, and Van
Doorslaer 2020). It also shows why we need good econometrics.

2 • popular, but not uncontroversial

Econometrics describes the field within economics that concerns itself
with statistical reasoning in the economic context. Within economics,
econometrics has become extremely influential. Econometrics has
always held an important promise: making economic insight more
practically relevant. It is great to understand in the abstract how na-
tional debt and GDP interact, but abstract models cannot tell exactly
how much national debt will lead to a decrease in how much GDP
growth. Economists who do not want to engage in statistical analysis
can sit in their armchairs and debate the badness of government debt,
but unless we have a precise estimate of how much debt is how bad,
these armchair debates will not be very useful for policymakers. Eco-
nomic numbers change the world, but it is important to ensure that
they do so for the better.

Statistical reasoning has not always been so prominent in economics.
Around the 1950s, papers using statistics in economics were still quite
rare. Before that, they were virtually non-existent. In fact, the first
usage of econometrics is often attributed to a specific publication: Jan
Tinbergen’s Business Cycles in the United States of America, 1919-1932
(1939a; 1939b), a report published in 1939 for the League of Nations,
the forerunner of the UN. Tinbergen wrote his report with a specific
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goal in mind: understanding the real-world workings of the economies
of powerful nations, to limit the risk of war. This contribution was
among the reasons hewon thefirstNobelMemorial Prize inEconomics
in 1969.

Interestingly, however, Tinbergen’s introduction of statistical tech-
niques to economics was not exactly uncontroversial. No other than
John Maynard Keynes wrote a highly critical review of Tinbergen’s
report in The Economic Journal (Keynes 1939). Statistical techniques,
he wrote, may be interesting, but will not really tell us anything of
value.1 Was there any point to Keynes’ skepticism? In order to do
econometrics well, we need not only to understand how to perform
econometrics, but to understand the type of reasoning it involves. Un-
derstanding Keynes’ skepticism, but also other arguments about the
nature of statistical reasoning, will be essential in doing so.

This is an introductory text to the philosophy of statistics, and to
statistical reasoning in economics. We will start at the beginning: why
are the typical methods the way they are? The reasoning behind the
most common type of statistical reasoning, significance testing, is quite
peculiar. What is its rationale? We will investigate this in Chapter 1.
Then, we will look at economic practice: do economists indeed use the
methods as intended, and if not, is that a bad thing? To do this, we will
look at two prominent critics of econometric practice in economics,
Deirdre McCloskey and Stephen Ziliak, in Chapter 2. In Chapter 3,
we will look at some philosophical problems for significance testing,
and in Chapter 4, we introduce an alternative way of thinking about
statistical inference: Bayesianism. In Chapter 5, we will take a closer
look at the debate between Keynes and Tinbergen, and see what we
can learn about this with respect to econometric modeling. Chapter
6 considers the problem of multiple testing. In Chapter 7, we look at

1 More precisely, what he wrote was: “Taking everything into account, the success-
ful application of this method [statistical analysis to economic problems] to so
enormously complex a problem as the Business Cycle does strike me as a singularly
unpromising project in the present state of our knowledge.” (Keynes 1939, 567)
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the well-known saying that “correlation does not imply causality”: is
this indeed true? What then is the value of correlations?

This text aims to train the reader in critical statistical reasoning. It
is not an introduction to doing econometrics. We have to start some-
where, and consequently, a basic familiarity with statistical methods
and econometric tools is assumed. That being said, chapter 1 does
review the reasoning behind significance testing, because these con-
cepts are so crucial to the philosophy of econometrics, and in most
statistics courses, it is easy to lose track the precise meaning of all the
basic concepts. However, we will not pay attention to how we can
calculate p-values from t-tests, and knowing how to do this will not
be necessary to understand the material in this book. Instead, we take
a closer look at the methods and the philosophy behind our everyday
econometric practices. By the end of this book, you will have a better
understanding of why statistical methods are the way they are, but also
what their limitations are, and how we should think critically about
the lessons that they can teach us.



1The Problem of Induction, Popper,
& Significance Testing

1 • econometrics: reliable and objective?

Econometrics is a scientific practice: its aim is to learn about the world
based on data. What makes it a scientific practice? Different frommere
opinions, science aims, and more or less succeeds, to be reliable and
objective. Can econometrics be reliable and objective? It appears so.
After all, the data do not lie. Nevertheless, there are some preliminary
concerns.

Let’s start with objectivity: econometricians like to say that we
should let the data “speak for itself”. Something can be called objective,
when it does not depend on the particular characteristics of the indi-
viduals involved, in this case, in the econometric analysis. However,
econometricians have to make many choices, and these can be made
differently by different econometricians. In particular:

• What data do we use? Does they fit our question well?
Can we trust the dataset?

• Economic questions usually are quite complex, and we
use economicmodels to simplify and make sense of
these questions. People using econometric models in
particular make one important choice when they de-
cide which variables to include in the model. When we
are interested in the relationship between unemploy-
ment and economic growth, we still need to ask which

7



8 the philosophy of econometrics

other variables should be included. How objective are
these choices?

• There aremany different statisticalmethods, each with
advantages and disadvantages. When econometricians
make conclusions based on, for instance, a regression
analysis, they typically ask: “How likely is it, that we
observe a specific sample mean, if our null hypothesis
about our econometric model is true?” To arrive at a
hypothesis test, we need to make important statisti-
cal assumptions. How objective are the choices that
econometricians have to make here?

An economist and a philosopher jointly conducted an experiment
in 1995 to answer exactly this question: if we send the same data and
the same question to the same world-renowned econometricians, will
they get to the same answers? The answer was “no”: six different teams
came up with six different answers (Magnus andMorgan 1999). This
casts some doubt on the idea that choices made by econometricians
make are truly objective.

What about reliability? Reliability describes the degree to which
the results of an analysis are the same if the analysis is repeated under
the same circumstances. One reason for concern for reliability is the
replication crisis that started in psychology: researchers attempted to
replicate empirical studies that psychologists conducted, and found
that a large percentage could not be replicated. While the replication
crisis has hit psychology harder than economics, in a large study of
replication attempts in 2016 found that only two-thirds of results
obtained through experimental economics can be replicated (Camerer
et al. 2016). This is much less than we would expect if the statistical
assumptions were correct. Observational studies, i.e. studies based
on data that did not result from the researcher’s manipulation, cannot
be replicated by definition, Still, there have been disconcerting signs
about the number of studies that falsely reject hypotheses (Ioannidis
and Doucouliagos 2013). This appears to be much higher than the 5%
or 1% of type 1 errors that we would expect if our statistical models
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were correct. We thus need to think critically about the methods that
we use, to make sure that we do not draw the wrong conclusions from
data.

2 • lies, damned lies, and statistics

Statistical reasoning is essentially probabilistic, and as we have seen,
the choices that statisticians have to make are not always made in the
same way by all econometricians. The fact that many of these choices
are expressed in mathematical expressions which are difficult to com-
prehend to the untrained, likely also does not help. This has led many
to hold a fairly skeptical attitude toward statistics. Perhaps you have
heard of the expression: “there are lies, there are damned lies, and then
there are statistics”, which is said to have originated from novelistMark
Twain. Another one, more specific to econometric modeling, comes
from Nobel Laureate Ronald Coase: “if you torture the data long
enough, it will confess to anything” (discussed in Tullock 2001).

It is perhaps easy to cast such skeptic comments aside by saying that
those who make them do not fully understand the practice. At the
same time, becoming more experienced as an econometrician, you
will find that choices between seemingly reasonable modeling options
can sometimes make significant differences. The story of the exper-
iment about objectivity in econometrics described above illustrates
that econometricians do in fact make different choices. Rather than
casting such comments aside, we should try to understand the reason-
able grounds for skepticism well, exactly so we can become better at
avoiding pitfalls. Econometrics is hard, and not just because of all the
statistical mathematics it involves. However, we have already seen that
it is also tremendously important. So, how can we make sure we do
econometrics with as little error as possible? To answer that question,
we need to look at some basics.

3 • the basics: inductive inference and the problem of
induction

Traditionally, philosophers and scientists have divided reasoning about



10 the philosophy of econometrics

the world into two broad categories: deductive reasoning and induc-
tive reasoning. Deductive reasoning involves drawing conclusions
from premises using themethods of logic: if done correctly, this means
that if the premises used are true, then so is the conclusion. If all trees
are green, and oak is a type of tree, all oaks are green. Deductive reason-
ing can be difficult: essentially the whole field of mathematics consists
of deductive reasoning. Yet, deductive reasoning has its limits. Are all
trees in fact green? This is something that deductive reasoning cannot
tell us. Even if a particular deductive argument is valid, its conclusion
is as good as its premises. Deductive reasoning cannot tell us anything
about what the world is like. How do we know whether all trees are
green, or not? We need to actually investigate some trees! We call this
inductive reasoning: reasoning that aims to draw general conclusions
based on observations. An example of inductive reasoning is this:

Tree 1 is green;

Tree 2 is green;

Tree 3 is green;

….

C: All trees are green.

There is an obvious problem with this type of reasoning: not all
trees are green. However, to someone collecting data in a Canadian
forest in summer, this very fact may be entirely lost. This investigator
may only see green trees, and therefore miss out on the fact that not all
trees are green. This is an example of something known as the problem
of induction.

The problem of induction is sometimes called the black swan prob-
lem. This comes from a particular historical anecdote. In 1697, Dutch
explorer Willem de Vlamingh was exploring the coast of Western Aus-
tralia on a rescue mission for a lost ship. The ship was never found, but
he did see something no European had ever seen before: black swans.
Up until this time, Europeans had thought that they had good reasons
to believe in a widespread idea: all swans are white. After all, a swan
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of another color had never been observed. But Willem de Vlamingh’s
observation proved this idea wrong. This example raises an important
question: how can we ever be sure that the generalizations we make
fromour data – such as “all swans are white” – are correct? In brief, the
problem of induction is essentially that there appears to be no satisfac-
tory answer to this question. We can never find sufficient observations
to confirm the claim that all swans are white, all trees are green, and
that no unicorns exist.

The problem can be put in the following terms. The problem of
induction: if we want to generalize based on observations, we must
do so in the following way:

1. X1 is W (swan 1 is white);

2. X2 is W (swan 2 is white);

3. X3 is W (swan 3 is white);

C: All X’s are W (all swans are white).

However, C does not follow from 1-3. Nomatter howmany white
swans you observe, it does not logically follow from these observations
that all swans are white.

The problem of induction has been an important influence on
statisticians, philosophers and scientists. How can we avoid stepping
into the trap that the Europeans made: looking at the world, and
assuming that what you see is all there is? As silly as the problem of
the black swan looks to us now, looking back at it, we often make
generalizations based on past observations that appear to be quite
reliable:

• The temperature has been increasing in the past, we can expect it to
continue in the future.

• The sun comes up every day, so the sun will come up tomorrow.
• When economic growth has been high in the past, so is employment,

and vice versa. Thus, when economic growth will go down, so will
employment (Okun’s law).
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Are these also vulnerable to the same mistake that the Europeans
made about swans? We appear to have good reason to be confident
about these particular judgments, despite the problem of induction.
The reason for this is that there is a partial solution to the problem
of induction, one that has had a tremendous influence on the field of
statistics.

4 • popper and the problem of induction

The partial solution to the problem of induction is accredited to Karl
Popper. A first step to Popper’s solution involves the observation that
while generalizations cannot be verified, they can be falsified. Falsifica-
tion, here, means finding evidence that shows that a particular theory
or hypothesis is false. In other words, while observations cannot defini-
tively proof that the statement “all swans are white” is true, they can
be used to show that the statement is false. The problem of induc-
tion applies to positive general claims (e.g. “all swans are white”, or
“unemployment always goes down when economic growth goes up”),
but not to the denial of these claims (e.g. “not all swans are white”, or
“unemployment does not always go down when unemployment goes
up”).

A second step is this: if falsification of a general claim fails repeatedly,
at some point, we can get confident that the claim is true. Popper called
this process corroboration. While we cannot verify or confirm gener-
alizations this way, we could get a little more confident in their veracity.
Accordingly, Popper argued that scientists should not be looking for
the confirmation or verification of their theories, but instead attempt
to falsify them. The effects of climate change on the environment, the
repetitiousmovements of the sun, andOkun’s law have all been heavily
scrutinized at various points in the history of science, and they have
withstood this scrutiny: they are heavily corroborated. This should
give us some confidence in their truth.

5 • hypothesis testing

The claims that economists investigate are typically not generalizations.
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Economists do not claim that “when GDP goes up, unemployment
always goes down”. Rather, they are interested in the claim that of-
ten, or typically, when GDP goes up, unemployment goes down. A
counterexample (e.g. one country where GDP went up, even though
unemployment went down for a while) does not refute Okun’s law.
This makes the application of Popper’s solution to the problem of
induction a bit challenging. After all, it appears that claims like “typi-
cally, when GDP goes up, unemployment goes down” cannot really be
falsified like “all swans are white” can. Thus, as economic laws are all
of this form, they appear all unfalsifiable. Popper thought that what
makes a field of investigation scientific is exactly the fact that they base
themselves on falsifiable claims. So, if economics bases itself on un-
falsiable claims, we can question whether we should call it a scientific
practice.

We can find a solution to this problem in significance testing, an idea
developed by the statistician Ronald Fisher. In his book The Design
of Experiments (1935), Fisher illustrated significance testing with the
example of a lady who said she could taste in the tea she was drinking,
whether the milk or the tea was poured first. Fisher proposed the
following experiment: the lady would be given 8 cups, in 4 of which
the tea had been poured first, and in 4 the milk had been poured first.
Fisher proposed a basic hypothesis, one that stated that the lady had
no special ability: the null hypothesis,H0. If the null hypothesis were
correct, the likelihood of her identifying any one cup correctly would
be ½, and we would expect her to correctly identify 2 of the cups in
which the milk had been poured first. If the lady would correctly
identify all 4 cups in which the milk had been poured first, however,
the odds of this happening if the null hypothesis were true would be
very small. In fact, it would be about 1.4%; see Table 1.

This, as you will recognize, is of course the standard logic of signif-
icance testing in statistics in general, and econometrics in particular.
Almost exactly like Popper’s Falsificationist logic, Fisher wrote about
the null hypothesis that it “is never proved or established, but is possibly
disproved” (1935, 16).

The standard approach to reasoning in econometrics is called clas-
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table 1.1 Fisher’s Lady Tasting Tea experiment

Correctly selected cups
of tea where the milk
was poured first

0 1 2 3 Correctly selected cups of tea
where the milk was poured first

Probability of event 1.4% 22.9% 51.4% 22.9% Probability of event

Probability of identi-
fying at least so many
correctly

100% 98.6% 75.7% 24.3% Probability of identifying at least so
many correctly

sical statistics, and it is heavily based on these central insights. After
Ronald Fisher’s explication of what he called statistical significance,
significance testing as a practicewas further developedby JerzyNeyman
and Egon Pearson. Neyman and Pearson developed the significance
test, which included two new concepts: the alternative hypothesis,
and the cutoff value or rejection rate, typically called the α-value. Ney-
man and Pearson had different ideas from Fisher about how statistical
testing should be implemented in science, but a conglomeration of
their approaches has led to classical statistics: the significance testing
framework that you find in statistics textbooks, and throughout almost
any scientific publication that uses statistics.

The basic concepts

Perhaps you are familiar with hypothesis testing, but because this idea
is so central to the contemporary statistical methodology, we need to
look at the concepts in more detail. What are the key elements of
significance testing?

The null hypothesis. On a given sample space, a null
hypothesis describes a specific distribution of a variable
of interest with a specificmean. We can call this the target
variable. In econometrics, such target variables generally
are effect sizes or correlations. In these cases, the null
hypothesis typically states that there is no effect or no cor-
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relation. In other words, the mean of the target variable
is 0.

The alternative hypothesis. the alternative hypothesis
describes an alternative distribution that may be true if
the null hypothesis is not true. Alternative hypotheses
come in three forms:
1. Specific. The original developers of the classical

framework intended the alternative hypothesis to
be specific. For example, such a specific alternative
hypothesis could be that the correlation between
two variables is .5, rather than 0 as stated by the null
hypothesis.

2. One-sided. Such general alternative hypotheses may
be formulated one-sidedly: hypothesizing that the tar-
get variable’s mean is higher than the null hypothesis
suggests. For example, the target variable has a mean
higher than 0.

3. Two-sided. Most often in econometric practice, the
alternative hypothesis is formulated even more gen-
erally, namely two-sidedly: the null hypothesis is not
true, the true mean is either higher or lower than it
proposes.

P-value. A p-value quantifies the probability that the
difference between a sample and the null hypothesis is as
large as observed, or that it is even larger than observed
in the direction of the alternative hypothesis, under the
assumption that the null hypothesis is true.

Cutoff value or rejection rate. The rejection rate αis a
probability value that delineates the p-value cut-off line
between rejecting or not rejecting a null hypothesis. It is
typically set at .05. This means that whenever a p-value
is lower than .05, we reject the null hypothesis.
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These four concepts together capture the process of significance
testing: a researcher formulates a null hypothesis and an alternative
hypothesis about a target variable in a given population, then gathers a
sample that is assumed to be a random selection of data from a larger
population. The researcher observes the target variable in this sample,
and under some statistical assumptions, calculates the p-value. This
is key to the statistical reasoning of hypothesis testing: if the p-value
is lower than the rejection rate, the null hypothesis is rejected, and we
have found evidence for the alternative hypothesis. If not, we simply
fail to reject.

An important implication is that, if the statistical model of the null
has been correctly estimated, the rejection rate, α, is exactly equal to
the probability of falsely rejecting a correct hypothesis. This is called
a type 1 error. However, the probability of making a type 2 error –
the chance of failing to reject an incorrect hypothesis, varies greatly
with sample size, and can only be calculated if we know or assume the
probability distribution of the alternative hypothesis or hypotheses.

6 • differences between hypothesis testing and
falsification

Significance testing and falsification come from similar concerns, and
similar ideas about how we can circumvent the problem of induction.
There are also important differences. The most important difference
is that while Popper’s criterion of falsification only applies when sci-
entific evidence is incompatible with a certain theory, statistical data
is never strictly incompatible with a statistical hypothesis. Because
the inferences that we draw on the basis of the data are statistical, they
are at most, highly unlikely to occur if a hypothesis is true. This is
important because it acknowledges that even if we reject a hypothesis,
we cannot do so with absolute certainty. To compare this, consider the
type of logical argument that Popper proposes:

1. Theory A (all swans are white) implies that event X
cannot occur (we observe a black swan);
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2. X occurs (we observe a black swan);

C: Therefore, Theory A is false

The logic of hypothesis testing is similar, but importantly different:

1. Theory B (99.9% of the swans in the UK are white)
implies that X (we observe a black swan in the UK) is
unlikely to occur

2. X occurs (we observe a random sample of 30 swans in
the UK from which 15% are black)

C: Therefore, we have evidence that B is false

What is important here is that observing a black swan in the UK is
incompatible with the theory that all swans are white, but not incom-
patible with the statistical hypothesis that 99.9% of the swans in the
UK are white.

7 • the logic of hypothesis testing

We have already seen that the proper use of statistics is a process that is
quite complex and relies onmany different questions: what data do we
use, what assumptions do we make about the data, which hypothesis
do we test, and which tests do we use? We can summarize the logic of
hypothesis testing as follows:

• if we correctly model the statistical process that gener-
ated the data, and

• we perform the significance testing procedure correctly,
and

• we reject our null hypothesis, then
• we can interpret the test as evidence against the hypoth-
esis.

Think again about our swan problem. Does the statistical method,
with all the choices it adds to the simple inductive logic that Popperwas
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concerned with, not offer a solution? Would 17th-century European
biologists have drawn better inferences about the color of swans if they
had been familiar with hypothesis testing?

The answer is: yes, and no. On one hand, the standard statistical
method makes assumptions about the sample and population: the
sample is, at least under the most common statistical assumptions, ran-
domly drawn from a larger population. Applying this to the swan case,
we see that, if we model the sample of swans that European biologists
had seen as randomly drawn from the overall population of swans, we
would still have corroborated the theory that 99.9% of the swans (or all
swans) are white. However, the samples that Europeans had seen were
not drawn from the general population of swans, but only from the
Western, northern hemisphere population. Thus, if we make certain
assumptions about the world, we can derive conclusions from our
observations, but these conclusions always depend on the correctness
of the assumptions that we have made.

8 • how does it help?

How does all this background help us to evaluate the reliability and
objectivity of econometrics? Note that the most common inductive
inference that econometricians make is a bit odd. Before studying
statistics, most people would expect statistics to be a practice in which
we let the data speak for itself. But what the discussion above has
shown, is that this is not what significance testers do. Significance
testers do not ask: does the data show that X? For instance, do the data
show that GDP and unemployment correlate negatively? Instead, they
ask: if we assumeX, is it likely to find something along the lines of what
we observe? This not only requires us to make important assumptions
that will affect our conclusions, but it also poses our research questions
in a bit of an odd way. As we have seen, there is an important rationale
for this way of thinking, but as we shall see in the next chapters, this
odd type of inductive reasoning is not without its problems.
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learning goals for this chapter

After studying this chapter, you should be able to explain:

1. indications why econometrics may not be reliable, and indications
it may not be objective;

2. what the problem of induction is;
3. the logic of hypothesis testing, and how this logic can be seen as a

partial solution to the problem of induction;
4. the similarities and differences between hypothesis testing reasoning

and Popper’s Falsificationist reasoning;
5. The following concepts: reliability, objectivity, inductive inference,

the problem of induction, falsification, corroboration, replication
crisis, p-value, null hypothesis, alternative hypothesis, cutoff value.





2Is Economics a Cult of Statistical
Significance?

Remember the last time that you ran an econometric model, or used
data to test a hypothesis. What was the first value that you looked at
after doing the test? For many users and students of econometrics,
and of statistics more generally, the answer to this question will be the
p-value. The p-value has become so central to statistics, that some have
started to be concerned about it: are we not looking at the p-value too
much? We will look at the criticism of its usage, and see if it is valid.

As we saw in the previous chapter, the reasoning involved in hypoth-
esis testing may be a bit odd, but it also has an important rationale. It
can be used successfully, as the simple example of Fisher’s lady tasting
tea has illustrated. There is also sufficient ground to criticize this way
of reasoning, as we discuss in the next chapter. We may thus take is-
sue with the logic of significance testing. However, another problem
can be that the way the reasoning is used in practice does not quite
correspond to theory. People may misuse the method, misinterpret
the meaning of p-values, and apply hypotheses in ways that do not
correspond to their original aims. This is the topic of this chapter.

You may think that such interpretation mistakes are made by some
users of statistics, but not by econometrics students, who have turned
statistics into their specialty. However, in this chapter we will discuss
the views of two economists who believe that almost all economists
who use statistics, including some of the best econometricians, fre-
quentlymake errors in the interpretation of important statistics. In par-

21
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ticular, they argue that one specific mistake is very common, with dis-
astrous consequences: mistaking statistical significance for economic
significance (McCloskey and Ziliak 1996; Ziliak andMcCloskey 2004;
2008). Before we discuss their views, we first take a look at some com-
mon misinterpretations of p-values.

1 • meaning and misinterpretations of the p-value

P-values are everywhere in statistics, so the question of what they are
should be a simple one. Nevertheless, even many experienced users
misinterpret the p-value. What follows are three common misinter-
pretations of the meaning of p-values (see, for instance, Dickson and
Baird 2011).

“The p-value is the probability that the hypothesis is true.”

This is an understandable mistake, even for experienced users of signif-
icance testing. It is especially damaging in cases in which H0 is highly
likely to be true. A psychological study, for example, found that a sam-
ple of subjects was able to correctly guess in 53% of the cases whether
a randomly placed image was going to appear behind a right or a left
screen, and found that this was significantly different from 50% at the
.05 level (Bem 2011). They took this as evidence that humans had the
ability of foresight.

Does this mean that the probability that humans do not have this
ability (the null) has a likelihood of less than 5%? In other words, is
there a 95% or higher chance that humans have the ability to see into
the future?

It does not. Critics of the study said that thiswas likely a coincidental
result. If these critics are right, the probability that people cannot see
into the future is very high (instead of less than 5%), even after this
experiment. But that does not change the p-value, however. Even if
the result is coincidental, the p-value remains correct. It still reflects the
probability something like this, or evenmore different fromH0, would
be observed in a random trial, if H0were true. As we shall see later,
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calculating the probability that a hypothesis is true or false requires
more information than just a p-value. So, the p-value is something
really quite different from the probability that H0 is true.

“The p-value is the probability that the results of the trial are due to
chance.”

The phrasing of being “due to chance” is too imprecise. The fact that
something is due to chance means that it is coincidental, that it results
from a probabilistic process. However, the calculation of p-values
assumes that the data result from probabilistic events. Except in cases
in which the data was deliberately rigged, p-values always result from
chance.

Consider the following example (Dickson and Baird 2011): some-
one is flipping a coin under the assumption that the coin is fair, and
finds that it results in 6 heads and 4 tails. The p-value of this trial would
be 75%. However, this is not the probability that the result is due to
chance. If we are dealingwith a normal coin, we know for a fact that the
result is due to chance. The probability that the result is due to chance,
is therefore not 75%, but 100%. However, imagine now that we know
that there is a magician who is manipulating the coins, such that she
controls the exact outcome of the coin flips. The p-value would be the
same. However, now we know that the probability that the result is
due to chance is 0%. A p-value of 75% can thus be the result of a test
that is completely cooked, that has left nothing to chance, or it can
be a result of a completely random process. The p-value by itself does
not tell us enough about the probability that the trial was the result of
chance, and neither does it provide enough information to make an
inference about this probability.

“The p-value signifies reliability: 1− p is the reliability of the result.”

If the hypothesis is correct, the p-value (and not 1 − p) signifies the
probability of finding the same result, or a result that is more deviant
fromH0. This does tell us something about how likely we are to find
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something similar again, were we to repeat the experiment, if H0 is
true. However, because we do not knowwhether H0 is correct, neither
p, nor 1− p are clear signifiers of reliability.

Reliability of statistically significant trials also depends on sample
size. Consider the example of Paul theOctopus, who, during theworld
cup of 2010 was remarkably successful at predicting match results. In
8 consecutive tries, he got 8 correct. This signifies a highly statistically
significant result. Under the null hypothesis that the octopus has a 50%
chance of guessing correctly, making 8 consecutive guesses corresponds
to a p-value of .0039. But, if we find that in a small sample (n=1), an
octopus can predict World Cup results (8 tries), we would not, and
should not, see this as highly reliable. We should certainly not see it as
99.41% reliable (1− p).

2 • what is economic significance?

The usage of statistical significance in economic science is widespread.
When people run statistical tests, or regression models, the first things
their eyes move to are the p-values: are they statistically significant?
According to some, this has led to an overemphasis on this statistic.
In particular, the two economists Deirdre McCloskey and Stephen
Ziliak have criticized the usage of statistical significance in economics
for decades. The title of their book on this topic, “The Cult of Statis-
tical Significance”, is a reference to the importance that economists
and other users of statistics attach to the p-value. According to Mc-
Closkey and Ziliak, most economists take the p-value to bemuchmore
important than it actually is.

The word significancemeans something like importance. If some-
thing is significant, it matters. But, it can matter in different ways. In
the context of econometric evidence, there are at least two different
ways in which it may matter.

Statistical significance indicates whether a statistical datummeets a
pre-set threshold that allows us to reject our null hypothesis. It tells us
whether the data we found is removed from the hypothesized value to
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an extent that would be statistically (highly) unlikely if our hypothesis
would be true.

Economic significance indicates how important a finding is from
the perspective of the person asking the question. So, something can be
of economic significance because it is important to economic science,
economic policy, or to our own lives.

Something can be an important finding for economic theory and
policy for various reasons, for instance:

• because it has a large effect on a variable of interest;
• because itmakes a big difference in people’s lives (small
effects can have big implications in people’s lives);

• because it changes the way we think about important
economic issues.

Economic and statistical significance are twodifferent things, but the
twooften get confused. Note that statistical significance does not tell us
anything about the size of the effect. A statistically significant finding
may indicate a tiny, and for all intents and purposes unimportant,
deviation from our hypothesized value. The most common way to
mistake statistical significance for economic significance, is to interpret
a low p-value as evidence that the result really matters for economics
or policy. If you make this mistake, you mistake statistical significance
for economic significance. To see what this mistake typically looks like,
let’s look at an example.

McCloskey and Ziliak discuss an example from a paper by Nobel
Prize laureate Gary Becker, Michael Grossman, and Kevin Murphy.
The paper aims to explain why people buy cigarettes. In doing so, they
build an economic model based on data from different states in the
United States. At some point in their analysis, they write that “the
highly significant effects of the smuggling variables (…) indicate the
importance of interstate smuggling of cigarettes” (Becker, Grossman,
andMurphy 1990). Why is that a mistake? Statistical and economic
significance are simply different things. So, to say that statistical signif-
icance indicates that a particular variable is important for a model is
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incorrect. The fact that an estimate is significant tells us nothing about
whether it should be in the model. For something to be included in an
economic model, it would have to do more than be statistically signifi-
cant. It would have to change the qualitative results of the model in a
theoretically plausible way, correlate stronglywith variables of interest,
or greatly improve the model fit. Statistically significant variables may
not do either of these things. Moreover, some non-significant variables
may actually have really good grounds to be in an econometric model.
If a team of highly trained economists makes these mistakes, it seems
everyone is liable to do so.

It goes too far to say that there is no relationship between economic
and statistical significance at all. If something is not statistically sig-
nificant, the found deviation may have well been the result of chance,
even if the null is true. Statistical significance therefore does tell us
something of importance. Some economists have therefore argued
that statistical significance is necessary for economic significance. That
means that if something is not statistically significant, it cannot be an
important finding for economic science. We will see later that this is
arguable. According toMcCloskey and Ziliak, statistical significance
is neither sufficient nor necessary for economic significance.

The big mistake that many economists, including Becker, Gross-
man, and Murphy make, is that they take statistical significance as
sufficient for economic significance. That means that if something is
statistically significant, it is also economically important. Let’s examine
this mistake in more detail, before we address the claim that statistical
significance is also not necessary for economic significance.

3 • statistical significance is not sufficient for
economic significance

There are two reasons why statistical significance is not sufficient for
economic significance: one obvious, and another less obvious. First,
some null hypotheses that wemay formulate about economic phenom-
ena are outright uninteresting. There is, for example, a statistically
significant relationship between the sea levels in Venice, as the city is
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slowly sinking, and the price of bread, which is slowly increasing, but
that is not an economically significant finding (Sober 2001). So some
statistically significant findings are simply not important. I did warn
you this was going to be obvious.

But there is also a second set of examples that show that not all
statistically significant findings matter economically. Consider the
following question: how can you make sure, as a statistician, that
almost any result will be significant? The answer to that question is
very simple: increase your sample size.

Strictly speaking, increasing your sample size will not guarantee that
your findings will be significant, but it will increase the likelihood that
any small difference from the null will be detected. Consider someone
who performs a test to see whether a coin is rigged, and flips the coin
1,000,000,000 times. They find that in about 500,050,000 cases, it
lands head. An average of 50.005%. With such large numbers, this
difference will be significant (P<.00078). But, does this also mean the
coin is rigged? We have really good evidence that the coin is not exactly
fair, but is it also rigged? A deviation of 0.005% will hardly affect our
conclusion on the coin is fair or not. In fact, it seems that it shows
that the coin is almost perfectly fair. A statistically significant finding
may thus result from a very small, irrelevant difference, or effect size,
especially when the sample size is large.

McCloskey and Ziliak (1996) provide an economic example: pur-
chasing power parity (PPP). The PPP theory states that, controlled
for exchange rates, goods should have the same price in every country.
Imagine we conduct a statistical test of this hypothesis and find a value
that is significantly different from 1, where 1 indicates equal prices. If
we look at the statistical significance only, we would then have to say
that this is evidence against the theory: there are statistically significant
differences in prices (controlled for exchange rates) between different
countries. But, if the sample is sufficiently large, we may find a value
of “.999” that is statistically significantly different from 1. However,
if that would happen, we would not say that the theory should be
rejected, but rather, we have found evidence in favor of the theory.
After all, .999 is extremely close to 1, even if it is statistically signifi-
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cantly different from it. For all intents and purposes, .999 shows that
purchasing power parity is correct, even though it is not supported by
statistics (Ziliak andMcCloskey 2008, 94–97).

So, statistical significance is not sufficient for economic significance.
Many statistically significant findings are simply not important, note-
worthy, or interesting, from the perspective of economic science.

4 • statistical significance is not necessary for
economic significance

Even if statistically significance is not sufficient for economic signifi-
cance, is it necessary? In other words, are only statistically significant
results economically important? McCloskey and Ziliak believe not: if
a sample size is small, and a certain target variable (e.g. an effect size)
fluctuates, results are less likely to be significant, but may nevertheless
matter a lot for policy. It is good to look at a few examples here.

Weight loss pills

The first example comes from a lecture by Stephen Ziliak.2 He lets us
imagine that someone asks us for advice on how to lose weight. You
know that there are two pills available. The first pill causes a mean
weight loss of 5 lbs, with a standard deviation of 1 lbs, while the second
pill causes a mean weight loss of 20 lbs, with a standard deviation
of 14 lbs. The second is not statistically significant, while the first is.
However, for someone in need of losing a lot of weight, the second pill
may be more effective.

A very real version of this example popped up during the early days
of the Covid-19 pandemic. A small trial showed that the drug Remde-
sivir had positive but statistically insignificant benefits for hospitalized
Covid-19 patients (Wang et al. 2020). If you had been in the patients’
life-threatening situation, and you would be given a choice of whether
to take the drug or not on the basis of this information, would you

2 https://www.youtube.com/watch?v=_gK5r7LFZZs&t=13m30s

https://www.youtube.com/watch?v=_gK5r7LFZZs&amp;t=13m30s
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take it? If your answer is “yes, if there is a chance that it helps”, you
have already implicitly admitted that sometimes non-statistically sig-
nificant results are economically significant. Later trials found positive,
statistically significant effects of the drug (Ali et al. 2022).

We can also look at an example from economic research discussed
by McCloskey and Ziliak (2004) that has been discussed widely in
economics:

A wage subsidy for unemployed workers

Another example that McCloskey and Ziliak discuss comes from re-
search about a subsidy that was implemented in the state of Illinois in
the 1980’s. It gave workers who were on benefits a cash sum if they
foundwork. In another experiment, it gave employees a cash sumwhen
it hired a worker whowas currently on beneifts. When successful these
policies are particularly cost-effective, because it limits the amount of
money spend on benefits, and only costs the amount of the cash sum,
which was $500. In a statistical analyses, the authors of this research
paper assessed the effects of the policy. It concluded that the second
policy had a cost-effectiveness ratio of $4.29 per dollar spent on average.
However, this was not statistically significant. Only in one sub-group:
those of white women, the effect was larger, 7.07 per dollar spent, and
statistically significant. The authors write:

“The fifth panel . . . shows that the overall benefit-cost ratio for the
Employer Experiment is 4.29, but it is not statistically different from
zero. The benefit-cost ratio for white women, . . . however, is 7.07,
and is statistically different from zero. . . . The Employer Experiment
affected only white women” (Woodbury and Spiegelman 1987, 527)

Woodbury and Spiegelman see the non-significant finding in the
group as a whole as indicating that there is no finding. But, in this case,
the p-value was .12. As Ziliak andMcCloskey write:

“That is to say, the 4.29 benefit-cost ratio was in the pilot study
statistically significant at about the .12 level. In other words, the es-
timate was not all that noisy. A pretty strong signal for a very strong
employment program.” (Ziliak andMcCloskey 2008, 99)
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What does this discussion tell us? It shows that limiting scientific,
or economic, findings only to those that are statistically significant,
may blind us against really important empirical findings. Statistical
insignificance often means that we need more research. But, it does
not mean that these findings are not economically insignificant. If,
in the case study of the employment subsidies, we would neglect the
result based on its statistical insignificance, we may not go through
with a policy that actually works well for workers and the government.
After all, if you would live in a state or country where a government
would needed to decide on a policy, and it would find that this policy
would have an expected return of $4.29 per $1, with a p-value of .12,
you would probably want your government to go through with this.

McCloskey and Ziliak conclude that the relationship between sta-
tistical significance and economic significance is quite weak. If our
statistical results show a deviation from hypothesized values, statistical
significance may give us some assurance that this is unlikely to happen
if H0were true, but even some non-statistically significant findings
may tell us something important, and many statistically significant
findings may tell us nothing of interest.

5 • economic significance, oomph, and loss functions

Now we know that economic significance and statistical significance
are not the same thing. But what is economic significance? What is
important from theperspective of policy and economic theory, is highly
contextual. That which is economically significant in one context is
not in another. Two factors that determine economic significance, are
oomph and the probability of the effect.
Oomph describes the size of the effect. Think about the examples

that we have seen: if someone is able to undergo an effective treatment
for a deadly disease, this is of tremendous importance. If a minimum
wage law is implemented, but as a result of this many lose their job,
this matters greatly, specifically to those who do lose their jobs. But,
a coin deviating a tiny bit from being exactly fair is rarely important.
The common denominator here is the size of the effect. McCloskey
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and Ziliak call this oomph – how important is the observed effect in
case we are right, and in case we are wrong?

The oomph of a result can be analyzed for four different scenarios
that you are well familiar with:

• correctly concluding that there is an effect;
• correctly concluding that there is no effect;
• incorrectly concluding that there is an effect: type 1 errors (falsely

rejecting the null of no effect);
• incorrectly concluding that there is no effect: type 2 errors (falsely

failing to reject the null of no effect).

Theremay be important consequences to all these outcomes. Think
about the experimental medication example: if we tell someone a treat-
ment may work, and it does, this is great, but if it ends up not working,
we may have given someone false hope in the final days of her life. But
if we falsely conclude a treatment has no effect, while in truth there
is a real effect, we may have prevented someone from being cured. If
we correctly conclude that a treatment does not work, there are no
consequences.

The same type of consequences play a role in economic research.
Think about the Reinhart-Rogoff controversy we discussed in the
introduction of this book: the two economists who wrote an article in
theAmericanEconomicReviewwho concluded that economic growth
is slowed down after a certain debt-to-GDP ratio based on an erroneous
analysis. This paper was widely cited by policymakers, and the article
had an immense impact on the austerity measures in Europe, and on
the treatment of Greece and Spain by the Eurozone group. Falsely
concluding that there was a big effect had as a consequent that many
of the harsh austerity measures that were implemented were in vain
or even destructive to fragile and heavily damaged economies in the
middle of an economic depression. If these findings had been correct,
they would still have had a large effect, but the effect would ultimately
have been positive for the economies of Greece and Spain.

This brings us to the second factor in determining economic im-
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portance: the probability of the effect, which describes how likely is
it that the positive or negative consequences of an action will occur.
What are the uncertainties that come with the effect? Here, p-values
do play an important role. P-values provide important information
about the probability of an effect. It is not just the size of an effect that
matters, but also how certain we are of it. For example, if we expect
that, on average, an employment subsidy of $500 will have an average
return of $4.29 per dollar, it makes a difference if we are sure it will be
between $4.19 and $4.39, or whether it may be between -$5.29 and
$13.29, as this would mean that the policy may also cost more money
than it saves. In other words, uncertainty matters.

These factors together make up a loss function that describes the
consequences (i.e. the costs) of making errors of magnitude in our
inductive inferences. Such a loss function, McCloskey and Ziliak
argue, should play a crucial role in the statistical inferences we make: if
we observe a non-significant effect on a treatment of a deadly disease in
a small sample, we should conclude that there may be an effect, but if
we observe a very small effect of little consequence in a large sample, we
may sometimes conclude that there is no effect or not one that matters.

Examples of two loss functions can be found in figure 2.1. Both the
red line and the blue line signify two possible loss functions of being
wrong. The outcome is best when it is exactly right. In that case, the
loss is 0. However, if the deviation increases in either direction, the
loss increases. The red loss function signals that increased error results
in exponentially more losses. In other words, being a little off is not so
bad, but being off by a lot will make an exponentially large difference.
In some cases, loss functions are asymmetrical: underestimation may
be better than overestimation, or vice versa, underestimation may be
worse. For instance, it may be better to overestimate a loss in GDP in
times of a recession than to underestimate it, because an overestimation
will result in government action, while an underestimationmay not. It
may be better to do too much than too little. While the two example
loss functions in Figure 2.1 are symmetrical, signifying that over- and
under-estimations are equally bad.

Importantly, loss functions represent value-judgements: they are
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figure 2.1 Two loss functions

not provided by the statistical theory itself. They are nevertheless
important when we interpret the results. This insight is not new. Mc-
Closkey and Ziliak took it from two statisticians that we saw in the
previous chapter: Jerzy Neyman and Egon Pearson. McCloskey and
Ziliak cite them as follows:

“Is it more serious to convict an innocent man or to ac-
quit a guilty? That will depend on the consequences of
the error; is the punishment death or fine; what is the
danger to the community of released criminals; what are
the current ethical views on punishment? From the point
of view of mathematical theory all that we can do is to
show how the risk of errors may be controlled and mini-
mized. The use of these statistical tools in any given case,
in determining just how the balance should be struck,
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must be left to the investigator” (Neyman and Pearson
1933, italics by; McCloskey and Ziliak 1996).

One of their students, AbrahamWald (who you might now from
theWald test), writes:

“The statistician who wants to test certain hypotheses
must first determine the relative importance of all possi-
ble errors, which will depend on the special purposes of
his investigation” (Wald 1939, italics by; McCloskey and
Ziliak 1996).

Both quotes get at something important: we cannot decide whether
to accept or reject a conclusion based on the p-value alone. This is
especially important for determining the required cut-off point, α, for
our p-value. We need to know what the consequences are of being
right or wrong, before we can say what the required cut-off value for p
should be.

To summarize: according toMcCloskey and Ziliak, econometrics
should not just be used to identify statistically significant findings,
but rather, it should assess the economic importance of the statistical
differences from hypotheses. This has an important implication: If
McCloskey and Ziliak are right, econometrics is not merely technical
value-free practice: whether to reject or not does not only depends on
the appropriate use of statistical methods, but also on the values of
the loss function. Such values cannot be derived from data or from
mathematical theory. Take, for instance, this question about loss: is it
worse to conclude that there is no negative effect ofminimumwages on
employment, even if there may still be one, or is it worse to conclude
the opposite, that there is a negative effect, even though there may
not be one? This question is not just technical: it is at least partly
determined by how bad we think it is to be unemployed and how bad
it is to work for a low wage (as the quote byWald illustrates well).
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6 • are things really so bad?

McCloskey and Ziliak have conducted some empirical research to
analyze how often the interpretation problems that they are concerned
occur. To do so, they analyzed papers published in the American
Economic Review (AER). They analyzed papers from the 1980s and
the 1990s (their book on the matter was published in 2008). What
they find is summarized well in Table 2.1, which is taken from their
book (Ziliak andMcCloskey 2008, 81).

Things do not look good. In the 1990’s, 62.8% (100-37.2) use the
term significance in ways that is ambiguous: it is unclear whether it
refers to economic or statistical significance. Furthermore, 21.9% (100-
78.1) do not discuss the size of the coefficients that they have found,
and 19% do not interpret the meaning of the coefficient. And remem-
ber, the American Economic Review is probably the most renowned
journal of economics in the world.

It is clear why some of these findings are problematic to McCloskey
and Ziliak, given the explanation that we have seen above. However,
this may not be true for all of the problems that they observe. It is good
to note here, that some of their criteria can also be seen as controversial.
Not everything that they consider problematic is necessarily so. There
is room for debate (see for example Hoover and Siegler 2008 for a
critical analysis of some of these criteria). Let’s look at some of them
in detail.

Question 11: Does the paper avoid “sign econometrics”,
remarking on the sign, but not on the size of the coeffi-
cient?

McCloskey andZiliak find that only 19% of the articles in the 1990’s
in the AER avoid doing “sign economics”. However, they argue, a sign
only matters if the magnitude of a found effect is large enough. If not,
a sign is not particularly important, and says nothing about economic
significance.
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Table 2.1: Errors that McCloskey and Zilliak report in papers that they

analyzed from the American Economic Review (from Ziliak andMcCloskey

2008, tbl. 7.1)
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Question 8: Does the paper consider the power of the
test?

The power of a test is 1–β, where β is the probability of making a
type 2 error (incorrectly not rejecting a true null hypothesis). While
the results improved from the 1980s until the 1990s, only 8% of the
papers in the AER consider the power of a test. Why is this an impor-
tant problem according to McCloskey and Ziliak? Without power,
we cannot calculate the uncertainty in our loss function. If we do not
reject a hypothesis, how likely is it that we failed to correct a false hy-
pothesis? There is a problem here that they acknowledge: we can only
calculate the power of a test if we have a specific alternative hypothesis,
something that is quite rare in most economics articles (generally, the
alternative hypothesis is a non-specific one-sided, or two-sided alterna-
tive). However, because sample size is correlated to power, we canmake
inferences about power, and when we consider whether we should
reject a hypothesis or not, it would be good to discuss this explicitly.

Question 14: Does the paper avoid choosing variables
for inclusion solely on the basis of statistical significance?

While this is a very common practice in economics (only 1 in 4
papers avoided doing this in the 1990’s) there is no clear economic
reason for this. In fact, even variables with coefficients insignificantly
different from zero, that are genuinely unimportant in explaining a
variable of interest, may have important interactions with variables of
interest. Recall that this is exactly the error that Becker et al. made, in
the article about cigarette addiction we discussed above.

Question 10: Does the paper eschew “asterisk eco-
nomics,” the ranking of coefficients according to the
absolute value of the test statistic?

Only 38.2% of the AER papers avoided asterisk economics. Asterisk
economics occurs, for instance, when economists analyze p-values
smaller than 0.01 as more important than p-values smaller than 0.05.
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Why is it bad? Think about the reasoning behind significance testing
that we have discussed in Chapter 1: we set a null hypothesis and
rejection rate beforehand, and afterwards analyze if the p-value passes
the critical value or not. Should it matter to the inference whether the
p-value is smaller than the critical value, or much smaller? And does it
signify anything that the p-value of one coefficient is larger than that
of another? According to the logic of significance testing, these things
should not matter. If it passes our critical value, that is all that matters,
then we can reject the null hypothesis.

McCloskey and Ziliak take this practice to be a sign of making p-
values too important: we have focused on that value so much that we
have come to think of a lower p-value as better than a higher one. In
fact, the p-value is only there to suggest whether there is a statistical
deviation from the null or not. And if there is, we should focus on
other things, such as the effect size. By ranking the p-values, we ascribe
more value to the statistic than the inductive reasoning behind the
statistic warrants.

Question 1: Does the paper a small number of observa-
tions, such that statistically significant differences are not
found merely by choosing a very large sample?

This is perhaps themost interesting, odd, and controversial criterion
that McCloskey and Ziliak discuss. A common idea in statistics is that
more information, more data, is always better. However, McCloskey
and Ziliak seem to disagree: they think that economists are in error
when they use a large number of observations instead of a small num-
ber. The reason for this is that the more data is used, the more likely
it is we will find statistically significant results. Using a large data set
thus seems to clash with Popper’s idea of science: if economists want
to reject a null hypothesis, and merely finding enough data makes it
very likely to do so, even if the hypothesis is (roughly) right, perhaps
economists are making things too easy for themselves. Think about
the examples used above. If a coin is almost perfectly fair, but just a
tiny bit biased, a large enough sample will automatically pick this out.
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So, given that there will almost always be at least a small deviation from
the null, a large sample almost always effectively guarantees statistically
significant results.

Still, should we really prefer to have less data than more? Surely,
that cannot be right? What would McCloskey and Ziliak say here? Of
course, I do not know what they would say, but here is something that
we can learn from this discussion: more data is of course better than less
data, but if we focus on statistical significance as a criterion of scientific
relevance, we should be very careful with drawing the conclusion that
a significant finding signifies something of importance. In other words,
if we are focusing too much on statistical significance as a criterion of
economic significance, then large sample sizes may prompt us to draw
highly misleading inferences. So, large sample sizes are good, because
they help us estimate values of interest more precisely. However, if we
do have a large sample size, our statistical significance test becomes less
informative. If our sample size is large, it is all the more important to
consider the size of our coefficients, and a significant p-value becomes
less remarkable.

7 • conclusion: is economics a cult of statistical
significance?

So, what have we learned? First, we should be very careful with using
statistical significance as an automatic criterion for relevance. Some
significant results about economically relevant hypotheses may not be
important themselves, because they are too small. Somenon-significant
results may be highly relevant from an economic perspective, even
though their insignificance gives us reason to interpret them as highly
uncertain outcomes.

A second thing we can learn from McCloskey and Ziliak, is that
individual economists, using econometric techniques, often fail to
appreciate the difference between statistical significance and economic
significance, and consequently tend to overuse statistical significance
as a criterion.

A third important idea that we have seen, is that the decision of
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which economic conclusions to accept based on the data is not merely
a technical matter. It should involve another question: how important
is the difference – is it a large difference, and would this magnitude
make an important difference to our theories and policies? This may
seem like a radical idea. After all, it is not only an acceptance of the
claim that economics is not objective, but an endorsement thereof.
Moreover, it incorporates an important subjective element in the study
of economic data: values.

The idea that econometrics cannot escape subjectivity will be a
theme in the next two chapters. In this chapter, we have discussedwhat
may go wrong if economists misinterpret, or misuse the class book
statistical method. In the next chapter, we will look at problems that
do not have to do with the interpretation of the method, but instead
with the method itself. Is significance testing really the best way to
learn from the data? In Chapter 4, we will discuss an unapologetically
subjective alternative: Bayesianism.

learning goals for this chapter

After studying this chapter, you should be able to explain:

1. the meaning of a p-value, and why the three examples of misinter-
pretations are indeed misinterpretations;

2. the difference between statistical and economic significance, and
the arguments about why statistical significance is neither sufficient
nor necessary for economic significance;

3. what a loss function is and why it is important for statistical infer-
ence;

4. why the problems that McCloskey and Ziliak discuss (asterisk
econometrics, sign econometrics, not considering power, including
variables based only on statistical significance, and using p-values
when there is a large sample size) are problematic.



3Problems for Significance Testing
& Severe Testing

In Chapter 1, we discussed the relationship between significance test-
ing, the problem of induction, and Popper’s falsification argument.
We saw that the logic of significance testing follows a similar logic as
Popper’s falsificationmethod, but with important differences. Overall,
we concluded that the logic of significance testing is at least supposed
to work as follows.

1. If we correctly model the statistical process that gen-
erated the data (i.e. our technical and philosophical
assumptions are correct), and

2. we perform the significance testing procedure cor-
rectly, and

3. we reject our null hypothesis, then
4. we can interpret the test as evidence against the hy-

pothesis.

Importantly, there is a fifth step.

5. If we do not reject our null hypothesis, we cannot
accept the null hypothesis.

In Chapter 2, we looked at the problem that economists and econo-
metricians do not always correctly use this logic: they do not always
follow the “official” reasoning, and derive conclusions that cannot be
derived on the basis of this logic. In this chapter, we will look at this

41
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logic itself: if step 1, 2, and 3, are conducted correctly, and economists
interpret the results correctly, is this a good way to get from the data
to the truth?

We will identify three serious philosophical problems for signif-
icance testing. We will then look more closely at the logic behind
significance testing, and see if there is something we can do to salvage
it.

1 • how about evidence in favor?

The first problem concerns step 5, mentioned above. It is also a prob-
lem for Popper’s falsificationism. The key of the problem is this: ac-
cording to both significance testing and falsificationism, evidence that
fits with a theory or hypothesis never counts as evidence in favor of a
hypothesis. This has an important rationale: avoiding the problem of
induction. But, as we will see, it has some strange implications, which
are difficult to defend.

To see this problem, ask yourself what happens when a p-value is
larger thanα? What if we find a p-value of 0.06 with anαof 0.05?
We fail to reject. But what dowe believe now? Officially, the logic of
significance testing is conditional: if we reject our null, then we have
found evidence. But what if we do not reject? Officially, the answer
is that nothing happens. A p-value higher than 0.05 is not evidence
for anything. It does not provide us with any reason to adjust our
confidence in the null hypothesis, H0. But this seems problematic for
two reasons.

Common sense

First of all, it is intuitive that if we put a null hypothesis through a
statistical test, and it is not rejected, we can be a little more confident
in it. Consider the following example.

A friend tells you that she has seen a marvelous magician, who is
not just doing tricks, but can actually read minds. Your interest is
aroused, but you remain skeptical. As it turns out, a scientist has
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recently conducted an experiment with the magician, in which the
scientists asked participants to think of one of 6 specific colors, after
which the magician had to guess the color. The null hypothesis is that
the magician has no special abilities, and that he will guess the colors
correctly in one out of six of the cases. As it turns out, after a full day
of testing with 50 participants, who all thought of a color 10 times, the
scientist could not reject the null hypothesis.

What should this do our confidence in the belief that the magician
cannot read minds (i.e. our belief in the null hypothesis)? Again,
officially, the logic of significance testing tells us that we should just fail
to reject, and that we cannot conclude anything from a p-value higher
than α(higher than .05). However, it seems that we should now have
a higher confidence in the hypothesis that the magician cannot read
minds. Anytime I read about a magician claiming to read minds that
fails to performbetter than chance, my confidence that such amagician
cannot read minds, and that mind reading does not exist, increases.
However, according to the official logic of significance testing, this is
not a proper conclusion.

The first way to phrase this problem is thus: common sense tells us
that non-significant evidence is sometimes evidence in favor of a null
hypothesis, but according to significance testing, we are never allowed
to count non-significant evidence as evidence in favor of the null hy-
pothesis. Is our commonsense judgment wrong, or is the principle of
significance testing wrong?

The Principle of Total Evidence

There is a further reason to be skeptical about the idea that significance
testing provides evidence only if it leads to a rejection: the Principle of
Total Evidence. This principle states that if we judge what we should
believe, we should use all the available evidence. This principle seems
to be very reasonable, if not obvious. Surely, if we are rational, we
should not ignore evidence when we want to make a judgement about
what to believe. Scientists, policymakers, court judges and juries, and
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anyone who is evaluating evidence, should consider all evidence, not
only a part of it.

The logic of significance testing appears to conflictwith theprinciple
of total evidence in cases thatwe fail to reject. Think about themagician
case: when we are evaluating what to believe about the magician, we
should incorporate the evidence that failed to reject the hypothesis that
his correct guesses are due to chance. But, according to the logic of
significance testing, when we fail to reject, the test is not evidence for
anything. The logic of significance testing tells us to disregard evidence
if it is non-significant, even if the quality of the evidence is good.

An easy fix?

Now, youmay think that this is a problem that is easy to fix. We simply
adjust the logic of significance testing: if p > α, we consider it evidence
in favor of the null hypothesis. This may be a good suggestion, but it
is important to see that this is more complicated than it sounds. This
solution faces two problems of its own.

First, it changes the logic of significance testing in an important way:
it loses its similarity to Popper’s falsification logic. This shared logic
was there for an important reason: the problem of induction shows
that evidence can never verify or confirm a hypothesis.

Second, where do we draw the line of when a p-value is evidence
in favor of a null hypothesis? A p-value of 0.06 is hardly evidence
for the null hypothesis. In fact, we may perhaps still interpret it as
evidence against it. It is, after all, significant at a 0.1 level. How about
a p-value of 0.06, or of 0.09, or of 0.11? Perhaps they are neither
evidence for, nor evidence against a null hypothesis? But at what point
does it become evidence? 0.2, 0.3, 0.4? This is unclear. In all of these
cases, there is still a deviation from the null that we would only expect
to occur sometimes. That, by itself, is not so clearly interpretable as
evidence in favor of a hypothesis.

Recall that in Chapter 2, we discussed the problem that, sometimes,
non-significant tests still count as evidence against the null hypothesis.
Recall the Remdesivir example, the medication that showed some,
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non-significant positive results in treating the Covid-19 disease. In this
case, non-significant evidence still seems to count (a little bit) against
the null hypothesis that Remdesivir does not work at all.

The problem is thus this: highly significant results are clearly evi-
dence against the null hypothesis, but slightly insignificant results may
still count against them. Sometimes, non-significant results also count
in favor of the null hypothesis, but there is no simple cut-off value at
which the non-significant evidence becomes evidence in favor of the
hypothesis.

In summary, the problem is not easily fixed. We will discuss a more
serious attempt at a solution below.

2 • the logic fails

Unlikely events happen. There is a widely publicized story of a newly-
wed British couple that found a photo in one of their old photo albums
in which they are building sand castles meters apart, years before they
would meet (Ogrodnik 2014). The odds that you would marry an
unidentified person that happened to end up in a photo in one of your
old photo albums is not very high. Still, stories like this are not all that
rare.

This results a serious problem for the logic of significance testing.
Recall from Chapter 1 that the logic of significance testing was sim-
ilar to, but also different from the logic of Popper’s falsificationism.
According to Popper, we should look for evidence that is inconsistent
with a theory, in order to disprove it. If we have done so, we can know
that the theory is incorrect. This logic is infallible: if we find evidence
that is inconsistent with a theory, the theorymust be wrong.

The logic of significance testing, on the other hand, cannot give us
inconsistencies, because statistics are always probabilistic. It can only
tell us that if a null hypothesis would be true, the observed evidence is
very improbable to occur. The logic behind significance testing is thus:
if, given a theory A, it would be very improbable to observe what we
observe, we have good evidence against A. In a slogan, we can put this
as follows: “evidence improbable according to a theory, then, evidence
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against this theory”. This logic may appear to be solid, but it fails
sometimes.

For example, we may have a theory that Jack is a football player (see
Dickson and Baird 2011). Given that Jack is a football player, it is quite
unlikely that he is a goalkeeper (about 1/11, p<.1). But, if we learn
that Jack is a goalkeeper, this is not evidence that he is not a football
player. In fact, the opposite is true.

This may seem like an unfair example, because a goalkeeper just is
a soccer player. But, consider another example of why the logic of
“evidence improbable according to a theory, then, evidence against
this theory” misapplies. Bart won a lottery and believes that this was
because “the universe wanted him to win”. His logic is as follows: “I
had a really bad day and asked the universe to help me. I bought a
ticket never expecting to win the jackpot. After all, the probability that
I would win the jackpot on coincidence is so low (p < 0.0000001), we
would never expect it to happen. However, I won, and I really needed
it. I can only explain it by thinking that the universewantedme towin.”
There is something deeply unscientific about Bart’s reasoning, but,
there is nothing wrong with Bart’s usage of the logic of significance
testing. We can construct the hypotheses as follows, withH0 the null
hypothesis andH1 the alternative hypothesis.

H0: luck determines whether Bart will win or not, and
H1: the universe determines whether Bart will win.
The evidence (Bart winning) is highly improbable givenH0 , while

it is consistent withH1. So, is Bart’s win evidence that the universe
makes “decisions” about who will win the lottery? It obviously is not,
but it does appear to follow the logic of significance testing.

We can think of another example: life on earth. According to our
best theories of astronomy and biology, it is very unlikely that life de-
velops on any planet. However, life has developed on earth. Following
the logic behind significance testing, we have strong evidence that our
best theories of astronomy and biology are therefore wrong.

Does that mean that the logic of significance testing is wrong? Its
defenders can appeal to an important condition that should be satisfied
before significance testing can take place: we should not formulate
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hypotheses after observing the data. Bart only started to consider the
lottery as evidence for the hypothesis after he won. But, if he had con-
ducted a real experiment, in which he first formulated the hypothesis
and then saw the lottery result as a datum to test this hypothesis, the
result would, in all likelihood, have failed this test.

Despite this rebuttal, the flaw in the logic behind significance testing
is of serious concern. Unlikely events, such as an individual winning
the lottery or the occurrence of life on earth, happen quite often. This
does not disprove the theories that imply that these events are unlikely
to occur. Yet, it is foundational to significance testing that, if a theory
states that some event is improbable, the occurrence of this event is
evidence against the theory.

3 • prior probability matters

A final problem is that sometimes a p-value is very small, but we should
still believe in the null hypothesis. In order to see this, let’s go back to
the magician example, but let’s this time assume that the magician did
pass the test. He guessed a statistically significant number of colors
correctly. The most plausible explanation is still that he got very lucky.
The test would be significant, but we should still not believe him. The
reason for this is that it is just very unlikely that some magician is truly
clairvoyant.

The final problem for significance testing is due to this aspect: ac-
cording to the logic of significance testing, we only take into account
the p-value of a test, but it does not matter whether the hypothesis
under scrutiny is plausible or not. We can put this as follows: what we
believe after observing the data should not only be determined by p-
values (i.e. the data in relation to the hypothesis), but also by the prior
probabilities of these hypotheses: how likely was the null hypothesis
under consideration to begin with? If a hypothesis is very likely to be
true, we should need much stronger evidence to reject it than if we
are rejecting a incredibly unlikely hypothesis (e.g. that the universe
determines who wins the lottery, or that people can read minds).

In Chapter 2, we discussed the psychological research investigating
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the hypothesis that people cannot see into the future (H0) against the
hypothesis that they can, under certain circumstances. In particular,
this research gave individuals the task to choosewhether they thought a
certain image on a computer screen would pop-up left or right. In this
case, whether or notwe end up rejecting the hypothesis that our guesses
will be random (i.e. not based on an ability to foresee the future),
requires some pretty strong evidence. Not any significance test (with
αof .1, .05, or, .01) should be able to convince us here. Significance
testing only gives us a binary choice: reject or not. However, if a
hypothesis is very plausible (e.g. clairvoyance does not exist), we should
need a little bit more than 1 significant test involving a sample of some
small group of individuals to change ourmind. One small p-value (p <
0.01) should not automatically lead to the rejection of the hypothesis.
But significance testing says that it should.

The probability of H0 orHa prior to the evidence should thus make
an important difference in the choice to reject H0.

Base-rate Fallacy

We can show that prior probability matters by looking at numerical
examples. One numerical example that illustrates this, is the base rate
fallacy:

Eve is in the hospital, being tested for a disease. The test
that is used, has a high reliability, namely of 98%. That
means that, if a person does not have the disease, it will
come out as positive (i.e. as an indication that the person
does have the disease) in only 2% of the cases. If a test
is negative, the person can be sure that they do not have
the disease: the false negative rate is 0%. This is similar to
using a p-value .02, and having a power of 100%, under
the null hypothesis that the person does not have the
disease. In Eve’s case, the test comes out as positive. This
sounds like really bad news for Eve: the disease is quite
awful, and it may take her a year to recover. However,
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table 3.1 The base-rate fallacy

Has the disease Does not have the
disease

Total

Test positive 10 2,000 2,010
Test negative 0 97,990 97,990
Total 10 99,990 100,000

now consider the fact that the disease is very rare: only 1
in 10,000 people suffer from it. If, in her town of 100,000
people, everyone were tested, we would expect to find the
following results.

That means that out of all the people who test positive
for the disease (2,010), only .5% (10 individuals) have the
actual disease. So, even though the test has high reliability
andpower, the chance of actually having the diseasewhen
the test comes out as positive is very small. How can this
happen? The reason is that the base rate, i.e. the prior
probability of having the disease, was extremely low.

In practice, we do not always know howmany people have a disease,
or more generally, how likely the null hypothesis is before we look at
the data. However, the same logic that applies to the numerical case
of the base rate fallacy also applies to cases in which we do not know
for certain how likely the null hypothesis is before seeing the evidence.
Even if we did not know that only 1 in 10,000 people has the disease,
but rather that the disease was simply “extremely rare”, we should have
still been very careful with drawing conclusions on the positive test.
The example shows that the prior probabilitymatters in our assessment
of statistical evidence. A rejection (p < 0.05) should not always mean
that a null hypothesis is false. Whether it does depends on how likely
it is that hypothesis was true from the start.
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Lucia de Berk

The importance of considering the prior probability when evaluating
statistical evidence is apparent whenwe consider a notorious court case
in The Netherlands: the case of Lucia de Berk. De Berk was a nurse
in a children’s hospital, and was accused of playing a role in many of
the deaths that occurred there. One of the main arguments for the
accusation was statistical: Lucia was present at many of the incidents
in the hospital. In fact, the co-occurrence of her presence and the
incidents was statistically significant under the null hypothesis of it
being a coincidence. Is this good evidence that Lucia de Berk is indeed
a murderer?

To know this, it is not enough that there is a statistically significant
co-occurrence between Lucia de Berk’s shifts and hospital incidents.
We also need to know what the probability is that a nurse working in a
children’s hospital is a murderer. That probability is very low. Thus,
if we were testing whether her higher-than-average presence at deaths
and near-deaths was due to chance, with the alternative being that she
was a murderer, we should need strong evidence to convince us.

Lucia de Berk was in fact convicted of murdering patients in the
hospital. After the conviction, mathematician Richard Gill played
a crucial role as an expert witness and activist on behalf of Lucia de
Berk. He argued that the proper p-value for the null hypothesis that
Lucia’s presence during the incidents at the hospital was solely due
to chance if she were innocent, was 1/49 (p = 0.02), and thus sta-
tistically significant. He argued, however, that to determine to what
extent the number of co-occurrences was evidence for the hypothesis
that Lucia de Berk is a murderer, we needed to consider prior proba-
bility: how likely was it that she was a murderer before consideration
of the evidence? If Dutch nurses in children’s hospitals have a very
low probability of being murderers, it may still be highly unlikely that
she was a murderer, even with a p-value of .02 (p < 0.05) for the null
hypothesis that her co-occurrence with the incidents is due to chance.
This argument played a crucial role in Lucia de Berk’s exoneration in
2010.
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4 • sub-conclusion

All of the problems discussed in this chapter have something in com-
mon. Ultimately, we are interested in thequestionwhat the data should
tell us to believe: which hypotheses are likely true, and which ones are
not? Ultimately, we are interested in this probability:

P (H|E): the probability that the hypothesis is true, given the evi-
dence (or the data).

However, significance testing only provides us with another prob-
ability: the probability that we observed a discrepancy between the
data and the hypothesis or a discrepancy that is even larger. Roughly
speaking, this is an estimate of P(E|H).3

P (E|H): the probability that we see the observed data if the hy-
pothesis is true

The implicit underlying idea here appears to be that if P (E|H) is
small, then, it seems, P (H|E)must also be small. However, the three
arguments above show that a small P(E|H) does not imply theP (H|E)
is small. The two are still linked. Indeed, a low P (E|H) in most
circumstances indicates that we should decrease our confidence inH .
For instance, if I think you are not a football enthusiast (P (H) is low),
but I then observe that you have three football shirts in your house,E,
which is quite unlikely if you are not a football fan, I should decreasemy
confidence inmy belief that you are not a football enthusiast. However,
as discussion in this chapter shows, this does not apply as universally
as we might think.

5 • research design and severe testing

In the next chapter, we will see that some philosophers, statisticians,
and econometricians think that the Principle of Total Evidence, the
flawed logic behind significance testing, and the importance of prior
probability provide a strong reason to move away from classical statis-
tics. Instead of using significance testing as our main tool in statistical

3 Strictly speaking, it tells us: P(d≥D|H), where d is a difference from the hypothesized
value, and D is the observed difference.
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reasoning, we should do something else. This conclusion, however,
may be too hasty: significance testing can be salvaged. We can address
all three problems through research design. DeborahMayo, a philoso-
pher of statistics, has defended some of the logic of significance testing
by developing these ideas. According to her, the idea of significance
testing does work, but it only works if we take into account the un-
derlying logic of falsification: a test is only a test if it is hard to pass.
The true motivation behind significance testing is not the statistical
test itself, but a more fundamental idea. What truly matters is that a
scientific idea passes a difficult test. She calls this severe testing:

Severe testing: if a hypothesis has a really good chance of not being
rejected if it were true, then, a rejection is good evidence against the
hypothesis.

Think about the test the magician underwent. If he truly did not
have magical abilities, it would have been be very, very difficult for
him to pass the test: the test was severe. And, accordingly, the magi-
cian failed the test. This fundamental idea can help us explain why
significance testing sometimes does not work. The logic of signifi-
cance testing looks very similar to the logic of severity. After all, low
p-values indicate that the data would have been very difficult to have
been brought about if the hypothesis is true. However, low p-values,
as we have seen, can sometimes be a result of procedures that are not
very severe. The concept of severe testing can also be reversed, when
tests are not severe, they are insevere:

Insevere testing: If data x agreewith a hypothesisH, but themethod
was practically incapable of finding flawswithH even if they exist, then
x is poor evidence for H.

The case of the lottery winner was different from the magician
example. One reason why Bart’s winning of the lottery failed to be
convincing evidence of the hypothesis that the universe made Bart win,
is that the test was not very severe. This is not a good research design.
The test was only formulated after the evidencewas brought about,
and it seems, the formulation of the hypothesis was partly based on the
evidence (“oh, I won after I prayed to the universe, the universe must
have made me win”). The test is thus very insevere.
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When is a test a severe test? Severity is not just the relationship
between some data and a hypothesis, as the p-value is. It is the relation-
ship between 1) a research setup, 2) the evidence that rolls out of the
research setup (i.e. the data), and 3) a hypothesis. In order tomake sure
a test is severe, we need to formulate the hypothesis first, and gather
the data later. If this happens appropriately, we should at least observe
our low p-value as a good reason to reduce our confidence in our null
hypothesis, even if our confidence remains high. In case of the base
rate fallacy, after observing a positive test statistic, we should still have a
very high confidence that we are not ill. But, this probability is at least
a lot reduced compared to the situation before the test.

In econometric practice, severity makes statistical inference more
reliable. We implement severity in the following ways.

• Make sure that we formulate a hypothesis before we
look at the data. If we let the data affect our hypotheses,
and then we test those hypotheses on the same data,
the test is not severe (Chapter 5).

• Do all the right diagnostic tests and robustness tests.
• Avoid doing multiple tests, only to then select the ones
that are significant (multiple testing). We know that
the more tests we run, the more likely it is that we will
find low p-values. But as we shall see later in the book,
avoiding multiple testing may be more difficult than it
seems. Wewill look at this ideamore closely inChapter
6.

6 • conclusion: where this leaves us

The logic of significance testing faces some problems: 1) it can only tell
us what not to believe, even if the data give us reason to believe certain
things, 2) the logic fails in certain cases, and 3) the prior probability
of a hypothesis matters in its evaluation, while hypothesis testing does
not take it into account.

The logic of severity is a better alternative. However, does severity
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solve all the problems of significance testing? We can avoid the second
problem of significance testing (problem 2, the logic fails), by simply
making sure that our statistical tests are truly severe tests. The logic of
significance testing may fail, but the logic of severity does not. Mayo
even asserts that if a hypothesis passes a severe statistical test, this also
counts as evidence in favor of the hypothesis. Therefore, it also deals
with problem 1 (How about evidence in favor?). So, the severe test
that the magician went through, not only fails to be evidence for the
mind-reading abilities of the magician, but also provides positive evi-
dence for the hypothesis that he cannot readminds. But it does not tell
us howmuch evidence it provides, and how strongly we now should
believe in this hypothesis. So, our main problem (problem 3, prior
probability matters) remains:

Main remaining problem: we ultimately want to know
what we should believe based on the data, and even severe
tests only tell us that something counts against or counts
in favor of a hypothesis, but not what we can conclude
about the probability of the hypothesis itself: P(H|E).

We are left with an important question: p-values may tell us that
data provides a good reason to reduce our beliefs in a hypothesis, but
what should we believe? In the next chapter, we will look at a radically
different way of looking at statistical evidence that does take this into
account.

learning goals for this chapter:

After having studies this chapter, you should be able to explain

1. The three different philosophical problems for the logic of signifi-
cance testing. You should be able to explain what they are, why they
pose a challenge to the logic of significance testing, and you should
be able to provide some examples that illustrate the problem.

2. You should be able to explain why severe testing is a possible way to
salvage the basic logic of significance testing
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So far, we have looked at classical statistical reasoning: the significance
testing tools that are so widespread among contemporary social and
natural sciences. In this chapter, we will look at an alternative, radically
different theory of evidence, called Bayesianism. According to the
Bayesian inferential logic, we should not ask the following question.

1. How likely is it that we find data that is so different
from our expected value under the null hypothesis X?

Rather, Bayesianism proposes that we ask this question.

2. How likely is hypothesis X, in light of the available
evidence?

As we shall see, answering Question 2 is more in line with what
scientists, economists, and other users of statistics generally want to
know. However, answering question 2 not only deviates substantially
from significance testing, but also comes with a variety of challenges
on its own.

1 • bayes' theorem

How to calculate the probability that a hypothesis is true? The key
mathematical formula underlying Bayesianism is Bayes’ theorem. It
looks as follows.

P (H|E) = P (H)
P (E|H)

P (E)

55
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Bayes’ Theorem tells us how we can calculate the probability a hy-
pothesis is true, given the evidence.

In the previous chapter, we have actually already seen this formula
in action, though we did not state it explicitly. It was used to illustrate
an example in which a low P (E|H)was compatible with a very high
P (H|E): the base rate fallacy. In this example, we knew exactly how
to calculate P (H|E).

P (H|E) = 0.9999(probability of not having the disease)

∗ 0.02 (probability of a false positive result)
2010

100000
(probability of positive result)

≈ 0.995

This tells us that, if the chance of having a disease is 0.00001 (1
- 0.9999), and we get a positive test with a 0.02 false positive rate,
the chance of having the disease is 0.005 (1 - 0.995). This example
illustrates how three pieces of information lead us to draw a conclusion
from the observed evidence, which is exactly what we are interested in.
The three pieces of information are 1) the probability that we observe
the evidence under the null P(E|H), 2) the general probability that
we observe a piece of evidence, and 3) the probability of a hypothesis
being true in the first place, in this case, us not having the disease.

Bayes’ theorem is a mathematical theorem, first derived by a Presby-
terian minister, Thomas Bayes. The formula itself is merely a mathe-
matical statement about the calculation of conditional probabilities. It
was not originally designed as a theorem about evidence and hypothe-
ses. The formula, however, was later adopted by a group of statisticians
who call themselves Bayesian statisticians, who think this formula can
be used to think about statistical inference more generally.

According to Bayesian statisticians, we should interpret Bayes’ for-
mula as a tool to describe how a rational personwould alter their beliefs
after observing some evidence. In practice, this can look as follows.
Say you currently believe that 50% of your classmates failed an exam,
and you have no reason to believe that you did better or worse than the



4 bayesianism 57

rest. However, you do know you got Question 1 right. You also know
that only 40% got the first question right. Of those who passed, 70%
got the first question right. You want to know P (H|E), the proba-
bility that you passed, given the evidence,E, that you got Question 1
right. Before we consider the evidence, the probability that you passed,
P (H), is 50%. The probability that you got Question 1 right if you
also passed, P (E|H), is 70%. Finally, P (E) represents the probability
that any student in the class gets Question 1 right, which is 40%. This
gives us:

P (H|E) = 0.5
0.7

0.4
= 0.88

So after learning that you got Question 1 right, you should have a
lot more confidence that you passed the test. The probability went
from 50% to 88%.

The Bayesian school of statistics believes that we can use exactly this
logic in scientific inference. In brief, the key distinguishing feature
from classical statistics is as follows: Bayesians believe that, rather than
following the logic of significance testing, statisticians should aim to
estimate the probability that a hypothesis is true, given the evidence
P (H|E), using Bayes’ theorem.

Bayesianism is therefore different from classical statistics. It tells us
not to stop at the conclusion that the observed data or something even
more unexpected are either unlikely or not unlikely to occur under the
null hypothesis, but to go further and to estimate the probability that
a hypothesis is true.

2 • example: a whodunnit

Bayesian statistics in econometric practice can get quite technical. To
illustrate Bayes’ theorem, we will look at a detective example. Imagine
that you are a detective in the early stages of a murder investigation.
There are three suspects: i, ii, and iii. Before more evidence comes
in, you think there is a 20% chance that each of these individuals has
committed the murder, and a 40% chance that none did it. New ev-
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idence comes in: police officers have found shoes of type X on the
murder scene. Suspect ii wore these shoes on the night in question.
We know that 80% of murderers leave footprints at the scene; the other
20% make sure to cover up the evidence. We also know that 5% of the
population currently wears shoes of type X.What should we believe
about the guilt of Suspect ii?

The hypothesis (H) here is that Suspect ii is the murderer. The
evidence (E) is that shoes of type X were found at the murder scene.
We know that the probability the suspect is the murderer before we
observe the evidence is 20%. We also know that the chance of finding
these footprints if Suspect ii is the murderer, is 80%.

P (H) : 0.20

P (E|H) : 0.80

The probability of observing shoes X (P (E)) depends on whether
or not Suspect ii is the murderer. We think there is a 20% chance that
suspect ii did it, and if so, there is an 80% chance that the suspect left
their footprints. If not, we know that 5% of the population also wears
these shoes, and 80% of those will also leave footprints. So if Suspect ii
did not do it, the probability of which is currently 100%-20% = 80%,
there is an 80% of 5% probability that they left footprint X there. So:

P (E) = 0.20 ∗ 0.80 + 0.80 ∗ 0.05 ∗ 0.8 = 0.192

We can now fill in Bayes’ formula:

P (H|E) = P (H)
P (E|H)

P (E)
= 0.2 ∗ 0.8

0.192
= 0.83

Whereas we thought that there was a 20% chance that suspect ii did
it before we observed the footprints, and if our assumptions about
probabilities are correct, we should now think that the chance that
suspect ii did it is 83%. We’d better keep our eye out for that one!
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3 • subjective and frequentist probabilities

How can we apply Bayesian logic to scientific practice? A first impor-
tant challenge to applying the logic in the base rate case to scientific
inference is this: what is P (H)? This factor represents the probability
that a hypothesis is true, before we have seen the evidence. But what
does that even mean? A hypothesis is either true or false. The proba-
bility to roll a “1” with a fair die is 1/6, which means that if you would
throw it a thousand times, you would expect 1/6 of the results to be
“1”. But if we extend this logic to hypotheses, it becomes absurd: we
cannot “roll” a hypothesis a thousand times, and see the results…

In the base rate example, we were trying estimating what we should
believe in light of the evidence, given that we know how likely it is that
our hypothesis is true in general. In real life, however, econometricians
do not knowwhat the general probability of a hypothesis is before they
see the data. This is exactly what they are trying to find out. Think
about the detective example, we assumed that there is a 20% chance
that suspect ii has committed the murder, before finding the evidence.
What was that based on, and how could the detective know that?

Beliefs that scientists have about the probability is that a certain
hypothesis is true, before they see the data, are subjective beliefs: they
do not indicate an objective probability of something that is already
known, but they indicate what a person, such as the scientist, believes.
When a Bayesian claims there is a 74% probability that a hypothesis
is true before seeing any evidence, this means: I believe that there is
a 74% chance that the hypothesis is true. The detective, for instance,
believed that there was a 20% chance that Suspect ii was guilty. Perhaps
she thought so on the basis of the way Suspect ii looked, behaved, or
smelled. But there was no objective way of knowing this. The same
is true for scientific hypotheses, for example: what is the chance that
an increase in minimum wage increases wages, before we have seen the
evidence?

Probabilities, in the classical framework, were not subjective, but
had a clear objectivemeaning: if the hypothesis is true, wewould expect
a result like this, or even more different from the null hypothesis, to
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occur with a frequency of p times, just like rolling a die a thousand
times. Because of this interpretation, classical statistics is often called
Frequentist statistics.

Take our magician examples again. What is the probability that
some magician can predict the color a participant is thinking of before
you have seen the evidence? You probably think that this is quite low.
But, this is a subjective belief, it represents what you think is likely. If
you would say that that probability is 1%, this simply means that you
think it is highly unlikely the magician can do this. If someone else says
there is a 3% chance, there is not a sense in which either one of you is
necessarily correct, while the other is not.

Subjective probabilities seem fuzzy. Is that fair to say? A first criti-
cism of the Bayesian school is that it bases itself on subjective probabil-
ities, which are arguably not clearly defined. What does it really mean
to say you believe something with 1%, 30% or 80%? Science, classical
statisticians say, should be based on clearly defined concepts. However,
Bayesians typically respond that the fact that a belief is subjective, does
not mean that it is necessarily vague. They may give the following
answer. A subjective probability of event A can be defined as the im-
plied probability of the willingness to bet on event A by a risk-neutral
person. For example, if you believe that there is a 30% chance that Ajax
will beat Chelsea, then, you would be willing to bet up to €.30, if your
return would be €1, but not more than that. So, when a risk-neutral
person bets €.30 on Ajax beating Chelsea, when the return is €1, we
know that their subjective belief that Ajax will win is 30%. There is
nothing vague about that.

Bayesian statisticians also have a strong argument for the claim that
people will generally hold probabilities that are rational. This argu-
ment is called theDutch book argument. The argument goes like this.
Suppose that you have an irrational set of subjective beliefs. So you
would, for example, believe that the chance that Ajax will win is 30%,
but the chance that Chelsea will win, or that the game will be a tie, is
75%. The odds do not add up. According to the argument, you would
then be willing to bet €0.75 on Chelsea winning or tying, and €0.30
onAjax winning if the payoff is €1,-. But if that is so, anyone canmake
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table 4.1 A Dutch book bet

Ajax wins A tie, or Ajax loses

Bet 1: costs €0.30 net income
€1 (prize) - €0.30
= €0.70

Net loss: €0.30

Bet 2: costs €0.75 net loss €0.75 net income
€1 (prize) - €0.75
= €0.25

Total €0.70 - €0.75
= -€0.05

€0.25 - €0.30
= -€0.05

a set of bets with you fromwhich you will surely lose money (see Table
4.1). If you were to make this set of bets and Ajax would win, you
would win €0.70 (€1 - €0.30) from the first bet, but you would lose
€0.75 from the second bet: a total loss of €0.05. If the match ended
in a tie or Chelsea won, you would win €0.25 from the second bet,
but you would lose €0.30 on the first. Again, you are losing €0.05.
This type of bet is called aDutch Book: a bet from which you lose
no matter what happens. This is of course a silly example: few people
would actually fall for this trap even if their beliefs were inconsistent.
However, the general idea behind this argument is that, if you do not
have consistent beliefs, you will act accordingly and make irrational
mistakes. Not updating according to Bayes’ theorem, is one way in
which you subjective probabilities may be irrational. Overall, the argu-
ment shows that although subjective probabilities are subjective, they
do have to abide by rational principles, because otherwise individuals
will face avoidable costs. The fact that they are subjective, does not
mean that a rational person can have any subjective probabilities they
like.

4 • interpretations of statistics

The key takeway from this discussion is that Bayesians think that prob-
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abilities are 1) subjective beliefs on which we act, that 2) are located
in our mind. Frequentists, on the other hand, think that probabilities
are 1) objective frequencies, that are 2) located in the world itself
(i.e. outside of the mind). This difference between Frequentists and
Bayesians is a disagreement about the interpretations of probabilities.
Consider this example. The weather reporter says there is “an 80%
chance that it will rain tomorrow”. Frequentists think that means:

Frequentists (probability of rain tomorrow): if there
are 100 days that have weather conditions similar to what
we have now, in 80 of those, we will see rain in the day
after.

Bayesians, on the other hand, think it means this:

Bayesians (probability of rain tomorrow): I have a
strong belief in the fact that it will rain tomorrow. If I
would want to make a risk-neutral bet about it, I would
bet €8 if I could win €10 if it rains tomorrow.

These interpretations may look compatible. In many cases they
are. It may both be true that I would bet €8 on there being rain
tomorrow, if there would be a €10 payout, and it may also be true
that if we have weather conditions like we have today, in 80% of the
cases there will be rain tomorrow. Both can be true at the same time.
However, there are certain claims about probability that only make
sense when using one of the approaches. One example of this is the
truth of hypotheses. For Frequentists, hypotheses are either true or
false. ForBayesians, hypotheses have probabilities. When you say that
ascribe a high probability to the hypothesis that you have passed the
test, it means that you believe you have probably passed it. According
to Frequentists, you have either passed it or not, but it is meaningless
to ascribe a probability to any hypothesis.
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5 • bayesian inference and statistics

Bayesianism is a general approach to inductive inference with broad
applicability. Bayesians, for example, can analyze the swan problem
that we discussed in Chapter 1: building on inductive logic, it seemed
plausible that all swans are white, but as the European explorers dis-
covered more of the world, they learned that this was false. According
to Bayesianism, should people who have only seen white swans believe
all swans are white?

Bayesianism would say that if our starting probability that not all
swans are white (P (H) is smaller than 1), and if the probability that
any observed swan is white (P (E) is not 100%), P(H|E) may be very
large, but will never be 100%. We should therefore also think that there
is some small probability that not all swans are white.

A question for you: what happens with P (H|E) in Bayes’ formula
when we observe a black swan after having seen only white swans?4

To understand the approach better, let’s first take a closer look at
the different parts of Bayes’ formula.

P (H): priors

The probability of a hypothesis being true before observation of the
evidence is called the prior. We have encountered prior probabilities
before, when we were analyzing why we still should have high confi-
dence in some hypotheses while there is evidence against them with
low p-values. Because probabilities in science are not as clear as they
are in the base rate examples, priors represent subjective probabilities.

P (E|H): the likelihood of the evidence

This probability is similar but not identical to a p-value. Remember,
the p-value is the probability that the difference between the expected

4 The answer is that the P (Ea black swan |Hall swans are white) = 0. Hence, Bayes’ formula
would have as an output that P (H|E) = 0.
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result of a test and the measured result is as great as observed or greater,
if the null hypothesis is true. The likelihood of the evidence is some-
thing slightly different: it denotes the probability that we observe what
we observe, given that the hypothesis is true. In certain cases, like the
base rate example case, we can specify this likelihood well: the possi-
bility of observing a positive finding, even if a person does not have
the disease. However, in other contexts, the p-value can serve as an
approximation of the likelihood of the evidence.

P (E): the probability of the evidence occurring, unconditionally

This term represents the probability that we would observe the evi-
dence in any case, regardless of whether the hypothesis is true or not.
This boils down to the probability that we observe the evidence, con-
ditional on all hypotheses and the likelihood that they are true:

P (E) = P (E|H1)P (H1)

+ P (E|H2)P (H2) + P (E|H3)P (H3) + . . .

=
∑
i

P (E|Hi)P (Hi)

It is important to see that not only the prior of the hypothesis of
interest plays a role here, but also the priors of all the other possible
hypotheses.

Consider the example of the exam we discussed earlier. We knew
that 50% of the people passed the exam, and of those people, 70% got
Question 1 right. We also knew that in total 40% got the first question
right. So, we can calculate howmany of the students who failed, got
the question right:

P (E) = P (E|H1)P (H1) + (E|H2)P (H2)

whereH1 is the hypothesis that you passed, andH2 the hypothesis
that you did not pass. E is the event of getting Question 1 correct.



4 bayesianism 65

0.40 = 0.5 +X ∗ 0.5
X = 0.1

So, 10% of the students who did not pass the test, got Question 1
right. Often, we will only know the probabilities on the right-hand
side, so we can calculate P(E) from those.

P (H|E): the posterior

This is the probability that scientists are ultimately interested in: the
probability that our hypothesis is true given the evidence. It is the out-
put of our formula. How should we interpret the result? It essentially
states that if we have a prior probability of P (E|H), and our other
probabilities are also correctly specified, we should, rationally, believe
that P (H|E) is the probability that the hypothesis is true after the
evidence. This posterior is itself the new prior for future research (see
Figure 4.1).

6 • bayesian updating

Bayesianism, unlike significance testing, tells us that any new piece of
evidence should have an impact on our belief in a hypothesis. When-
ever a relevant piece of data or an observation comes in, we should
calculate a new posterior from a prior. In Chapter 3, we discussed the
principle of total evidence: the idea that all evidence should be used
in the evaluation of a hypothesis or theory. Bayesianism respects this
principle. The process of using evidence to calculate a posterior from
a prior is called Bayesian updating. Essentially, Bayesian updating
means that the posterior becomes the new prior in future research.
So, if new evidence comes in again, we use the previous posterior as
our new prior (see Figure 4.1).

The fact that Bayesians update on all evidence that comes in, is an
important difference with classical statistics. According to classical
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figure 4.1 Bayesian updating. FromNorton (2011)

statistics, we need to design a test beforehand. Only when all the data
is in, can we evaluate the hypotheses. And, only when the data allow
us to reject the null hypothesis, should we change our beliefs. Only
then does it count as real evidence. Bayesianism tells us to update all
the time. For example, every time we observe a white swan, this should
affect our belief about the number of white swans, even if it does not
come from a study of at least 30 individually randomly sampled swans.

7 • an econometric example

Let’s look at an econometric example: does a minimum wage increase
unemployment? We may have different prior beliefs about this. Some-
one who likes neoclassical economics will say “yes, definitely”, while
more Keynesian-minded economists may say “no, not necessarily”. We
define two hypotheses:

H1: minimumwage does affect unemployment;

H2: minimumwage will lower unemployment in an eco-
nomically significant way.

We can then assign prior probabilities to these hypotheses. This
will be different for different economists, and perhaps for different
countries and contexts. But let’s put thematH1 = 0.4, andH2 = 0.6.
Now the evidence fromCard and Krueger (1994) comes in: minimum
wage affects unemployment in a statistically insignificant way, and in a
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way that is the opposite from what we would expect if H2 would be
true. We can say, thatPEH1 = 0.2: if aminimumwage does not have
an economically significant influence on unemployment, we would
expect to find something like this data, or even further removed from
the null hypothesis in 20% of the cases. P (E|H2) on the other hand,
is perhaps 0.01: if minimumwage would decrease unemployment in
an economically significant way, then it is highly unlikely to observe
the evidence that Card and Krueger find.5 Applying the formula, we
can now calculate how likelyH2 andH1 are after the evidence:

P (H|E) = P (H)
P (E|H)

P (E)

P (H1|E) = 0.4 ∗ 0.2

0.2 ∗ 0.4 + 0.01 ∗ 0.6
=

0.08

0.086
= 0.93

P (H2|E) = 0.6 ∗ 0.01

0.2 ∗ 0.4 + 0.01 ∗ 0.6
=

0.006

0.086
= 0.07

Someone who was first quite confident thatH2 was correct, rather
thanH1, with respective probabilities of 0.6 to 0.4, should now change
their beliefs in the other direction. They should now think thatH1

is more likely (with 0.093 probability) and should believe thatH2 is
nowmuch less likely (0.07 probability).

The conditional probabilities in this example are still very simple.
Below, Iwill look at an example that usesmore sophisticated estimation
techniques.

8 • is bayesianism unscientifically subjective?

Much like classical statistics, Bayesianism comes with philosophical
problems. It is good to point out that while the mathematical formula

5 It is important to note here that the PEH1 = 0.2 can, under certain assumptions,
be approximated by a p-value (which was, as you might remember, indeed .2). For
the P (E|H2)=0.01 calculation, we would need much more information, that the
Card and Krueger paper does not provide, so in this case, this value is fictional.
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itself is uncontroversial – everyone believes that Bayes’ theorem cor-
rectly describes a mathematical reality – it is controversial whether,
and to what extent, it should guide our scientific (and econometric)
choices.

Above, we already discussed one problem for Bayesian philosophy:
subjective probabilities are not clearly defined. Bayesians were able to
deflect that criticism, although it is up to the reader to judge whether
they did so satisfactorily.

Themost important criticism of Bayesianism is related: whenwe are
doing a Bayesian analysis, we need to specify a prior. Prior probabilities
have an important influence on the outcome, so subjective beliefs of
the researchers will affect the outcome. If we were to start with a
high prior that a hypothesis is true, it would be more likely that the
posterior would also be high than in other cases, and vice versa, low
priors lead to lowposteriors. Formanyproponents of classical statistics,
the reliance on priors makes Bayesian analysis unscientific. Science
requires objectivity, so this feature of Bayesian analysis is problematic.

Some Bayesians agree that science should be objective, and that
the role of a scientist’s own beliefs about the hypothesis should be
minimized. One reassuring result is the principle of stable estima-
tion (Savage 1963): no matter what your priors are, as the amount of
available evidence approaches infinity, the effect of the priors on the
posterior approaches zero. This is a reassuring result, but gathering
infinite evidence takes infinite time. In cases of smaller sample sizes,
the priors will have an important effect on the data.

A secondway to respond to the critique is to point out thatBayesians
can use diffuse priors, also called flat, or uninformative priors. Using
diffuse priors entails dividing the prior probabilities equally over all
available hypotheses. Say you are investigating a crime, and there are 10
suspects, and you are confident that one of the 10 has done it. In this
case, using diffuse priors means that you assign the prior probability
equally over all hypotheses, so 10% to each of the suspects.

This sounds like an objective solution, but it is arbitrary in its own
way: what if one of the suspects, Mr. X, has a criminal record already,
while another suspect is a high schooler with no record of serious
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wrongdoing whatsoever? Assigning the same prior probability to both
may sound objective, but this objectivity may be illusionary. Some-
times we can have good reasons to assign different prior probabilities
to hypotheses; neglecting these can hardly be called objective.

A final response to the problem of subjectivity of priors is that a
Bayesian analysis should always include a sensitivity analysis to dif-
ferent priors. For example, we do a Bayesian analysis and find that
the probability of Mr. X being a murder is 80%, if we use a prior of
60%. Next, we redo the analysis with different priors. We find that,
if our prior probability is lower than 40%, the probability of Mr. X
being a murderer drops below 50%. We see now that the result was
mainly driven by our specification of the priors: our priors had a large
impact on the outcome. Conversely, if priors have a minor impact on
the posterior, sensitivity analysis provides us with a strong argument
that our analysis is correct.

Despite these three arguments, a classical statistician may still find
the usage of priors objectionable. The usage of priors is one of the
main points of contention between the two schools of statistics.

9 • small samples

As we saw above, Bayesian statisticians believe in continuous updating.
Thatmeans thatwhen evidence comes in, even if it is just a small sample
or a single data point, we should update our beliefs, if only a little bit.
This becomes of crucial importance in cases where the data samples
are small, but the stakes are high.

Think, for example, about testing new medicines. This was very rel-
evant in an example from 2008 in The Netherlands: a study about the
treatment of pancreatitis with probiotics, substances that can be found
in yoghurts, yoghurt drinks, and beverages like kombucha. There were
298 individuals with pancreatitis in the study (Besselink et al. 2008).
Of the roughly 150 individuals that were treated with probiotics, 24
individuals died. In the control group, only 9 individuals died.

Halfway through the study, the researchers had already observed a
difference, but that was non-significant (p = 0.1 > 0.05). In Chapter
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3, we saw that classical statistics violates the principle of total evidence.
If a difference is non-significant, we should disregard it. This is one
of these cases where, according to classical statisticians, we cannot yet
interpret the evidence because it is not significant, even though we
can already observe a difference that may matter a lot. In hindsight,
however, it is clear that if non-significant results had been taken more
seriously, deaths may have been prevented.

In these cases, Bayesians argue, the prior probability that the treat-
ment is harmless should play a role in determiningwhether to continue.
What’s more, the researchers should continuously update, and if the
posterior that the treatment is beneficial (rather than harmful) drops
below a certain level, the experiment should be terminated, no matter
whether it is significant in the classical sense.

This example illustrates the importance of theBayesian commitment
to the principle of total evidence; classical statisticians believe that we
can only start interpreting the evidence once the sampling is complete,
but according to Bayesians, all evidence counts all the time.

There is an important reason classical statisticians think we should
finish sampling. Stopping rules, which dictate the duration of the data-
gathering process,have an important influence on the interpretation
of the data. Consider the following strategies.

Strategy 1: collect data until you find a statistically significant find-
ing.

Strategy 2: collect 30 data points and observe whether there is a
difference.

In the first case, the chance of observing a significant finding is
much larger than the second. If, in both cases, we end up with 30 data
points and significant results, we should still have higher confidence
in the second strategy: after all, the first strategy all but guarantees a
significant result. Phrased in the terminology discussed in the previous
chapter, Strategy 1 is less severe than Strategy 2.

For classical statistics, specifying the rules before data collection is
an important part of the research design. For Bayesians, stopping rules
may also matter. It may assign a different likelihood to evidence found
with the first strategy. But it maintains that all evidence counts as
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evidence at all times, even if the sampling has not finished. In macroe-
conomics, the samples are often small too: think of yearly data points
since 1960, and Bayesian and classical methods may therefore diverge
in their outcomes. The next subchapter concerns a case study on this
topic.

10 • econometrics example: long-run growth models

Much like classical statistics, Bayesian statistics encompass a variety of
statistical methods. Sometimes, such as in the example of the base rate
fallacy, these methods are simple. Whenever econometric models are
involved, however, Bayesian estimation gets increasingly complex. The
following paragraphs briefly discuss one example of Bayesian econo-
metric modeling, to give an impression of the process. However, if
you are interested in the details, introductory textbooks on Bayesian
econometrics are a much better place to look (e.g. Greenberg 2012).

Whereas classical statistics typically requires a certain minimum
sample size for reliable results, Bayesian statistics does not. As such,
Bayesian methods often find application in cases where only small
sample sizes are available. One widely studied problem in economic
modeling is the determination of the main causes of the long-term
economic growth of a country. There are no more than 100 countries
that collect data on economic growth, and have kept these data from
the last 50 years. But, because long-run growth takes time, there are
only few data points on which a model can be based. Many variables
potentially affect economic growth, and a large sum of models can be
created from these data. What is more, whether or not a variable works
within a model, is dependent on the other variables. With different
controls, we will find different parameter estimates, which will some-
times be statistically significant, and sometimes not (we will get back
to the questions arising in modeling in Chapter 5).

Economist Xavier Sala-i-Martin tackled the problem of economic
growth modeling in a 1997 paper called “I just ran two million re-
gressions” (Sala-i-Martin 1997). He randomly selected a large set of
economic models and computed a weighted average of their test statis-
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table 4.2 A table representing posterior estimates from a bayesian analysis.

From Sala-i-martin (2004)

tics (i.e. coefficients and variance). In a follow-up article, Sala-i-Martin
used Bayesian analysis to estimate the probability that certain variables
belong in the true long-term growth model (Sala-I-Martin, Doppel-
hofer, andMiller 2004). Again, this was based on many model estima-
tions, all of which were assigned a prior probability of being correct.
For this, they used a diffuse prior in case models were equally large, and
the larger the model, the smaller the prior. They found the 18 variables
that most probably explain economic growth, as summarized in the
following table.

As you can see in table 4.2, for each estimated variable, there is a
posterior inclusion probability: the probability that this variable is
included in the true model. As it turns out, 5 variables have a chance
of belonging in the true model of over 50%.

11 • bayesianism vs. classical statistics

Bayesianism and the classical approach are generally seen as rivals. They
differ in outlook on several matters, as we discussed in previous sub-
chapters. The two crucial points of difference between Bayesian and
classical statistics can be summarized as follows.
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Small samples (p > α): what to conclude?

Bayesian: We should learn from the data, even if they are not statisti-
cally significant. All evidence is evidence. This is particularly relevant
in cases with small sample sizes, such as pharmaceutical trials. By updat-
ing continuously, we are doing the rational thing: taking into account
all evidence. If we were to disregard the nonsignificant results, we are
not abiding by the principle of total evidence.
Classical statistician: Good design is really important for good evi-

dence. We should clearly specify the sample size before we do our tests
and experiments. If wewere to interpret our data halfway through, our
analysis would be less rigorous and less severe. By specifying the sample
size beforehand, we are making it difficult for the null hypothesis to
be rejected. If we would not do so, a researcher can simply continue
testing until they find what they like, making the result less rigorous.
Specifying the tests beforehand, including the sample size, helps to
avoid confirmation bias.

Priors: yes or no?

Bayesian: Without priors, we are effectively blind. A
piece of evidencemay seemhighly unlikely given a certain
hypothesis, but if we do not know what the prior proba-
bility of the null hypothesis and its alternatives are, this
by itself does not tell us much. We should be careful to
interpret a statistically significant p-value as really strong
evidence against a hypothesis if there are also strong rea-
sons to believe the hypothesis is true. Unlikely events
sometimes simply occur, so not all low p-values signify
false null hypotheses. We should therefore consider the
prior probability of a hypothesis before we judge whether
it is likely true or false.

Classical statistician: Priors are not scientific; they reflect
a person’s subjective view of the world. They may be
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affected by intuitions, prejudices, and biases. Therefore,
they do not belong in science.

Bayesian: Priors may be undesirable, but they are simply
there and should affect the outcome. Even you, classical
statistician, cannot say that you believe the psychologist
who found statistically significant evidence for the hy-
pothesis that humans can see into the future (p < 0.01).
The only reason that you do not believe that, is because
of your reliable, but subjective, prior beliefs. Moreover,
the effect of priors fades away the more data becomes
available, and we can use ignorance priors if need be. Not
all priors necessarily reflect our personal beliefs.

12 • conclusion

Ultimately, both classical and Bayesian statistics aim to draw reliable
conclusions from data.

On one hand, classical statistics gives us only inverse probabilities:
the probability thatwe findwhatwehave seen (or something evenmore
deviant from what we would expect), given that the null hypothesis is
true. Often, what matters is the probability a hypothesis is true given
the evidence.

On the other hand, classical statistics does give us a certain type of
objectivity: the subjective beliefs of the researcher do not play a role
in the procedure itself, even though they may affect the conclusions.
Maybe it does not give us the probability a hypothesis is true given the
evidence, but only because it recognizes that doing so would require
subjective input, which should not be part of scientific analysis.

What is important to note is thatthe two approaches need not nec-
essarily be in conflict. You do not have to decide whether you are a
Bayesian or a classical statistician. You may also be more pragmatic.
Bayesianismmay be particularly useful when the data samples are small,
or when we have good justifications for our priors. Classical statistics,
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on the other hand, may be more appropriate in fields with significant
disagreements, where using priors may be controversial.

In econometrics, Bayesianism is used with increasing frequency, and
I am sure that when you continue studying econometrics, you will
encounter Bayesian analyses more and more.

learning goals for this chapter

After having studies this chapter, you should be able to

1. Explain Bayes’ theorem, its central concepts (priors, posteriors, up-
dating.) and how it can be applied to interpreting scientific evidence.

2. Conduct a basic Bayesian analysis, if the probabilities P(E|H), and
P(E|-H) are given.

3. Explain arguments in favor and against Bayesianism.





5Keynes, Tinbergen, & the Problems of
Econometric Modeling

1 • the structure of an econometric model

This is what the most basic econometric model looks like:

Y = α + β iX i + e

There is a dependent variable Y , an intercept parameter α, and a
set of independent variablesX i, which are assumed to linearly co-vary
with Y in proportion to estimated parameters β i. The error term e,
captures all variance in Y that cannot be ascribed to variance in the
independent variables, and is assumed to be randomly distributed.

So far in this book, we have looked at statistical reasoning in the
abstract: Significance testing based on statistical evidence. In econo-
metrics, however, statistical reasoning generally takes place within the
context of economic models. Statistical modeling plays a crucial role
in inductive inference in econometrics.

What is the role of modeling in our statistical inference? Once we
know which dependent variable we want to study, testing models gen-
erally occurs in three steps. First, we assess which independent variables
we use; these comprise the elements ofX i. Second, we estimate the
model: we estimate α, β i, and e, through, for example, ordinary least
squares. Third, we assess the model fit, or the parameter of interest
that we have estimated. The model fit is generally assessed through the
method of least squares and an F-test. The method of least squares

77
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expresses in 0≤R2≤1 howmuch of the variance in Y is explained by
the model. The F-test results in a p-value for the null hypothesis that
the model does not explain Y at all. The slope parameter β i represents
effect sizes, whose statistical significance are tested through t-tests.

2 • experimental and nonexperimental data

When it comes to modeling, economics differs frommany other social
sciences in one important aspect: the type of data that it has at its
disposal. Most other sciences build heavily on experimental data. By
creating an experiment, knowledge is generated in a replicable way, and
if the experimental design is done correctly, the experiment provides
good evidence of a treatment effect in the groups under investigation.
Experiments work well under one of the following conditions.

(a) Two treatment groups are exactly the same, except for the treat-
ment

(b) Two treatment groups are randomized, such that we would
expect any differences between the groups to be randomly distributed
across the two treatment groups, except for the treatment.

In case of either (a) or (b), the treatment effect can be interpreted
as a causal effect. After all, if the outcome variable is different in the
treated group and the untreated (i.e. control) group, nothing but the
treatment can explain this difference. This method is remarkable, and
while it has its own problems (see for example the replication problem
in psychology that we discussed in Chapter 1), experiments provide a
solid basis for scientific inference.

While the very basics of the statistical tools used in econometrics and
other sciences are the same, in macroeconomics, we generally cannot
do experiments. After all, no two countries are the same, and we could
not possibly randomize the countries of the world and treat half of
them with some economic treatment that we are investigating. For
example, we cannot randomly assign the economies of the world to
two treatment groups, and impose austerity measures (i.e. government
spending cuts, and increased taxes) on one group and not the other, to
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see how this plays out in the decades thereafter. The fact that this is
impossible is a central challenge that has shaped econometrics.

There is an important caveat to the claim that macroeconomists
cannot do experiments. There are rare occasions in which, without the
intervention of researcher, settings arise that closely resemble condi-
tions(a) and(b) above. We call thesenatural experiments. The example
of the minimumwage increase in New Jersey discussed in Chapter 2
is one example of such a natural experiment. In this example, there
were two very similar groups: fast food restaurant workers in west
Pennsylvania and in East New Jersey. One of these groups underwent
a treatment: an increase in the minimumwage. The subsequent differ-
ence or absence of difference between the groups, namely the difference
in unemployment, must be the causal effect of this treatment. Another
example of a natural experiment is found in an article by James Feyrer
(2009). He investigated the impact of geographical distance on trade
caused by the 7-year closing of the Suez Canal following hostilities
between the oil-exporting nations in the middle east and theWestern
World.

These natural experiments, however, are imperfect. Strictly speak-
ing, they neither satisfy the conditions (A) nor (B) that we discussed
above: they neither represent perfectly equal treatment groups, nor
truly randomized treatment groups. Therefore, we call them “quasi-
experiments”.

In the context of macroeconomics, econometrics has to make do
with what is there: observational data. Observational data are defined
by the fact that they are generated in a setting that is not manipulated
by the researchers for the purpose of the research: they merely appear
to the researcher, who can then observe them. Researchers may be
involved in shaping economic policy, but they do so because they have
economic expertise on what is best for the country, not, we may hope,
because they are curious to learn what will happen if a certain policy is
implemented.

Significance testing was developed as a method for doing experi-
ments. As we shall discuss in this chapter, it is not exactly obvious that
the statistical inference that applies to experimental data, also applies to
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observational data. In this Chapter, we will look at observational data
generally. In Chapter 7, we will take a closer look at quasi-experiments.

An excellent strategy for learning about the methodological chal-
lenges that face a certain method, is to consider the time at which they
were introduced to a science. The introduction of econometrics to
economics was roughly in the 1930’s. Econometrics has since become
an accepted part of economics. Consequently, discussions about its
soundness and importance are rare. However, by the time of its intro-
duction, economists heavily debated the issue of whether statistical
data analysis should play a role in economics. We will look at arguably
the most influential methodological debate between two economists
about econometrics: the Keynes-Tinbergen debate.

3 • keynes and tinbergen

JohnMaynard Keynes is perhaps the most well-known and renowned
economist that has ever lived. He is well known for his macroeco-
nomics book “The General Theory of Employment, Interest, and
Money” (1936). He is less known for his earlier work on probability
theory, and he is only a little known for his skeptical attitude towards
econometrics and over-usage of mathematical tools in economics.

Keynes held a particular view on how the economic world worked.
He believed that economics, like physics, was ultimately a matter of
laws. Physics describes the world in natural laws, and economics in
economic laws. However, there is an important difference between
these types of laws. The physical world is, compared to the economic
world, quite simple: there are a small number of variables that deter-
mine the behavior of a physical body, and the laws that describe them
are stable – the same in all different contexts. Because of this, we can
describe the physical world in mathematical form, but the same can-
not be said for economics. Humans are not as simple as sub-atomic
particles.

According to Keynes, economics may be guided by laws. For ex-
ample, the relations described by the IS-LM model describe some
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economic laws.6 But, ultimately, mathematical expressions of such
laws are at bestmere approximations of reality. The economic world
is so complex, that economic laws, unlike physical laws, will remain
uncertain and unstable. Even if there is some mathematical relation-
ship between two economic variables in a particular time and place,
changes in some third, fourth or fifth variables will cause render this
relationship invalid. Economic laws are simply too complex to express
in a simple linear model. We can summarize this point as follows.

Instability of economic laws (Keynes): because the economic realm
is so complex, the laws that guide economic behavior will be unstable,
as they depend on factors that change in different contexts, and uncer-
tain, as the complexity makes it too difficult to estimate these unstable
relationships.

This point has a significant implication for econometric modeling.
Econometricians often use the term “the true model”. The truemodel
is a faithful, correct description of reality. If Keynes was right, this has
important implications for the concept of the true model in economet-
rics. The true model is either so complex that no econometric model
will be able to estimate it, or the true model is simpler, but changes
from time to time, and country to country. In both cases, the estima-
tion of a true model is an extremely ambitious project, that may be
practically impossible. At best, we may find approximations of the
true model.

Keynes died before the first Nobel Prize in economics was awarded.
If not, it seems likely he would have been among the first on the list
of potential laureates. Instead, the first Nobel Prize in economics was
awarded to Jan Tinbergen, together with another econometrician,
Ragnar Frisch, ”for having developed and applied dynamic models for
the analysis of economic processes”. In essence, the prize was awarded
for their work on the usage of statistical techniques in economics.

Jan Tinbergen first studied physics, but moved to economics, be-
cause he was interested in making the world a better place: a place with

6 It is important to note, however, that Keynes himself did not use the IS-LM graphs
that have come to be associated with his work.
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less poverty, and more peace. In the 1930s, the League of Nations,
the predecessor of the United Nations, was convinced that economic
stability was key to avoiding war in the future, and asked Tinbergen to
conduct an analysis of business cycles (or “boom-bust cycles”) using
the best available data of the United States. Tinbergen used regression
methods on time-series data. This method was relatively new at the
time, because before that, data had been scarce, and computational
power expensive: computors, at this time, were people, who would be
doing math for the professors they worked for! Tinbergen’s study was
one of the first uses of statistical techniques in economics. In other
words, it was one of the first econometric studies.

Keynes wrote a review of Tinbergen’s study in The Economic Jour-
nal (Keynes 1939), that has become quite well known. The review was
very critical. Keynes raised serious doubts about whether Tinbergen’s
statistical model could teach us anything. There is an important reason
to go over Keynes’ criticisms, namely that these criticisms potentially
apply to all econometricmodels. Sowhen you read the criticism below,
think about which ones you think are relevant to econometric mod-
eling today. I strongly recommend reading his review to anyone who
works with econometrics. It is short and insightful. Keynes described
numerous methodological problems with regressions methodology.
We will go over them in turn.

4 • keynes' review

The aim of econometric models

Keynes assumed econometric models in general, and Tinbergen’s
model in particular, to have the following aims:

• estimating the relative effect of different independent
variables on investment (his dependent variable);

• estimating their causal impact on investment (the de-
pendent variable).

You may, at this point, already take issue with Keynes. We learn
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in our first statistics courses that correlation should not be confused
with causality, and econometricmodels typically only tell us something
about correlations. While that is true, Keynes does have an important
point: if these factors do not represent causal effects, they are not re-
ally describing economic reality. Ultimately, we are interested in the
question what happens to Y if X i changes. Everything in the lan-
guage of regression indicates that this is the aim. For example, the term
“dependent variable” strongly indicates that it is dependent on the inde-
pendent variable. Dependence implies causality. “Effect size” is a term
that strictly speaking only refers to a correlation, but strongly indicates
an actual effect of independent variables on dependent variables. We
can call this way of describing economicmodels causal language, every-
thing in this way of speaking reveals that we are ultimately interested
in causal relationships.

What can we conclude from the statistical fit of a model?

According to Keynes, Tinbergen acknowledges that “no statistical
model can prove a theory to be correct”. This is in line with the falsifi-
cationist logic that we have seen before: even the best model fit is not
proof that an econometric model is the true model. Also in line with
the falsificationist logic, Tinbergen argues that a poor fit can show a
model to be false or incomplete. Keynes disagrees with Tinbergen on
this point. Keynes suggests that, because a model can only be tested
under a large set of assumptions, even true models may fail to provide
a good fit. If a model does not fit the data, the model may be incorrect,
or some of the assumptions made in the process may be incorrect. So,
even a bad fit does not prove that the model is incorrect.

Complete list of variables

Keynes notes that the absence of a relevant variablemay lead to signif-
icant misspecification of the model, and of the individual coefficients
of the independent variables that are in the model. Keynes concludes
from this, that the econometric analysis is only valid if we have a com-
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plete list of the variables that affect the dependent variable. But, if that
is true, Keynes suggests that we already need to know everything about
the world, namely all the independent variables that make up the true
model, before we estimate our model. Often, we are not precisely sure
what the complete list of variables is.

Measurability

A further concern is that not only do we need to have a complete list
of relevant variables, but all these variables need to be measurable and
available. Keynes argues that this may have important implications:
some important variables, such as sentiments and expectations (e.g.
Keynes’ famous “animal spirits”) may be very difficult to quantify, if
not impossible. If these are included in the true model, and they are
not available, what is the econometric model worth?

Multicollinearity

A significant concern of Keynes is multicollinearity, or has he calls it
“the different factors are substantially independent of one another”. If
two independent variables “explain” the same variance, it is not clear
to which of the two this variance should be ascribed.

Reverse causality

Similarly tomulticollinearity, reverse causalitymay also create the prob-
lem that the coefficients are over- or underestimated.

Linearity assumption

Acommon complaint with simple econometricmodels is that they typ-
ically assume linearity. Why would we expect the economic world to
be constructed out of linear relationships? In some instances, Keynes
argues, it is highly unlikely that the variables interact linearly. How-
ever, the correct form does not simply present itself and is therefore
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often unknown. This may lead to misspecification of the model and,
consequently, incorrect estimates.

Establishing the right time lag

Some economic variables do not impact growth (or investment, in
Tinbergen’s case) in the same period of time. In those cases, we need
to establish a time lag: how long does it take to for the independent
variable to have an impact on the dependent variable? Tinbergen tried
different time lags until the fit was good, and then established that he
should use that time lag. Keynes finds this a dubious method, because
it might make it too easy to find a good fit (this is called overfitting, a
term discussed shortly).

Sensitivity to specific data points

A further concern is that in the type of time-series analysis that is
common in econometrics, the starting and end points of the data may
have a large influence on the result. Keynes criticizes Tinbergen for
using as a starting point for his analysis the year 1919, a boom period,
and as an endpoint the year 1929. a recession period. This may have a
significant impact on the coefficients that are found.

Invariance

Keynes finally points out that we can only observe the effect of in-
dependent variables on the dependent variable if the variables show
sufficient variation. This point is quite important from a theoretical
point of view: there may always be background factors, for example,
trust in banks or the government, that will have a significant influence
on the variables of macroeconomic models. If these background fac-
tors remain constant for significant periods, we cannot know how they
impact the true model.
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Conclusion: stability of found coefficients

Keynes’ general conclusion aligns closelywithhis viewon the economic
world: Keynes was skeptical that Tinbergen’s estimated model would
hold true if more data became available. In other words, it may have
been a description of the data from 1919 to 1929, but neither was it
the true model of the United States economy, nor would it help us to
predict the behavior of the economy in the future.

Keynes ends with a note about Tinbergen:

“I have a feeling that prof. Tinbergen may agree with
much of my comment, but that his reaction will be to
engage another ten computors and drown his sorrows in
arithmetic.”

Tinbergen wrote a reply in which he explained his choices (Tin-
bergen 1940). He explained, for example, that linearity is not such
a strange assumption if we consider the fact that any mathematical
form can be approximated by a linear relation. Moreover, responding
to the multicollinearity problem, Tinbergen explained that while the
independent variables were not necessarily uncorrelated, he did assume
that there was no shared covariance with the dependent variable.

Keynes wrote a reply to Tinbergen’s reply (Keynes 1940), continu-
ing the debate, and ending with the following challenge to Tinbergen:

“Professor Tinbergen appeals to me several times to cook
(or, should it be, eat?) more puddingmyself before declar-
ing it indigestible. I would ask in return for an experi-
ment on his part. It will be remembered that the seventy
translators of the Septuagint were shut up in seventy sep-
arate rooms with the Hebrew text and brought out with
them, when they emerged, seventy identical translations.
Would the samemiracle be vouchsafed if seventymultiple
correlators were shut up with the same statistical?”

Even putting aside his more particular point of contention, Keynes
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posed an interesting general challenge. According to the myth of the
Septuagint, seventy translators translated the Hebrew bible to Greek
in rooms that were completely independent of each other. They came
out with seventy identical copies. Just to be clear: this is a myth, and
there is no evidence this actually happened. Keynes wondered if the
same is true for econometrics. If the same econometricians get the
same econometric task, would they construct the same model, and
find the same coefficients?

What is themain upshot from this interaction? Even thoughKeynes
may be seen as a little uncharitable, he was right to point out that an
econometricianmakes many choices that may have a significant impact
on the outcome. Remember, falsificationism, as a general theory of
science, tells us that we should formulate theories and let the data tell
us if they are right. Keynes shows us that there is an important step
between formulating theories and testing them: specifying an econo-
metric model that allows us to test our theory. In the specification of
such a model, many choices have to be made that affect the outcome.
Keynes rightly asks us to pause and assess the validity of this procedure.

5 • philosophy of science: how seriously shouldwe
take keynes' concerns?

Keynes' Septuagint

In Chapter 1, we discussed that from 1995 to 1997, an econometrician
and a philosopher jointly conducted an experiment on the basis of
Keynes’ open question (Magnus andMorgan 1999). Keynes was right
to suggest that econometrics does not provide a singular method to
analyze the data.

How about the more specific problems he raises with Tinbergen’s
econometric method? To see this, we need to introduce two central
concepts from the philosophy of science: under-determination and
double counting.
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Under-determination

Remember from the discussion above, that the success of a model is
typically assessed by its fit: how well does it capture the data. However,
ultimately, we are interested in theunderlyingquantitativemechanisms
or laws that explain the behavior of our dependent variable. Does a
good fit (a highR2, a low p-value for an F-test) tell us that the model
indeed captures these economic relationships?

A significant problem with the idea that fit indicates the correctness
of a model, is that it may be possible to explain the variance in one
dependent variable with multiple models or theories. In fact, it turns
out that statistical phenomenon can be described by infinite possible
models. Consider the Lucia de Berk example from Chapter 4: her
frequent presence at incidents in the hospitals in which she worked
can be explained by numerous hypotheses. One of them is that Lucia
de B. is a murderer, but many different hypotheses can explain this, for
example (Philipse 2015, 30):

H1: the concurrence was a mere coincidence;

H2: at the times of concurrence, Lucia always shared her
shifts with someone else who caused the incidents;

H3: Lucia was often on a night shift, and the risk of inci-
dents is higher during the night;

H4: Lucia is a relatively incompetent nurse, so the risk of
incidents during her shift on the ward is high;

H5: Lucia prefers to care for patients with complex dis-
orders, and these patients have a greater risk of dying;

H6…

You get the point: there is no limit to the amount of theories that
are compatible with the data. To some extent, we can solve this prob-
lem through critical thinking: perhaps not all alternative hypotheses
are plausible. However, there is a deeper point: all data points can
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be described by an arbitrarily large number of theories. This is even
true for our best theories. To give one extreme example, consider the
following two theories about physics:

Theory 1: our currently best theory of physics is correct;

Theory 2: our currently best theory of physics is correct
until 2030, after which the laws of physics will change.

Of course, Theory 2 is silly. However, it is important to note that
both theory 1 and Theory 2 are consistent with the data we have about
physical phenomena. There is an arbitrary element to theory (or hy-
pothesis) development. Only our imagination limits the theories that
we can come up with. We can, for example, also formulate a different
theory:

Theory 3: our currently best theory of physics is correct
until 2031, after which the laws of physics will change.

In this way, the list of theories that fitwith the best available evidence
is arbitrarily large.

In econometrics, we will often say that “the evidence points in the
direction of…”, or “our data indicates that…”, but it is good to note that
strictly speaking, data cannot really point in anydirection. We can easily
illustrate this with silly examples. You can, for example, find a spurious
correlation generator online: https://www.tylervigen.com/spurious-
correlations. This generator will give us correlations like those shown
in the following graphs (figure 5.1 and 5.2).

These examples are clearly not serious. No one would make the
mistake of actually interpreting these results as anything different than
accidental correlations. But how do wemake sure that we do not make
similar mistakes in econometrics? Especially in time series data, it is
not particularly difficult to find correlations. This is one reason why
Tinbergen and Keynes are right to point out that data alone cannot
prove any theory correct.

A variant of this problem applies to the process of specifying the

https://www.tylervigen.com/spurious-correlations
https://www.tylervigen.com/spurious-correlations
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figure 5.1 A spurious correlation (from https://www.tylervi-

gen.com/spurious-correlations)

figure 5.2 A spurious correlation (from https://www.tylervi-

gen.com/spurious-correlations)

model shape. Keynes criticized Tinbergen for imposing linearity onto
his model. But if Tinbergen had used more functional forms, this
would also be reason for concern. Ifwe start to includemore functional
forms, we are bound to arrive at models with a better fit. A more
complex model that is fitted to a dataset will necessarily produce a
better fit than a simpler model. If wemake ourmodel complex enough
(i.e. with enough non-linear functional forms), we can guarantee a
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figure 5.3 An overfitted model (from https://us.energypolicy.solu-

tions/docs/comparing-results.html)

good model fit. This phenomenon is called overfitting: a good model
fit that is driven by complexity. This can be illustrated by the following
graph (figure 5.3):

The linear model has a worse fit than the blue model, as the blue
model fits perfectly. Still, it is obvious that we should not expect the
blue model to capture the true model.

We can come up with an arbitrary number of very complex models
with different function forms and large sets of variables, and we are
guaranteed that it will fit the data well. But such models will break
down if we extrapolate them. These problems illustrate that that data
alone will never be sufficient to tell us which theory we should believe.
Philosophers of science call this the problem of under-determination.

Under-determination: the available evidence will never
be sufficient to determinewhich theorywe shouldbelieve,
because an arbitrarily large number of theories will be
compatible with the data.

https://us.energypolicy.solutions/docs/comparing-results.html
https://us.energypolicy.solutions/docs/comparing-results.html


92 the philosophy of econometrics

Overfitting: adding complexity to the model, in particu-
lar adding more variables and functional forms, achieve
an arbitrarily good fit that is unlikely to remain if new
data comes in.

These two ideas tell us something important: model fit, by itself,
does not guarantee that the econometric models are correct. The
problem of under-determination thus shows us that we need to be
careful: models should be simple and plausible. Even then, we cannot
always trust our model fit. There may be many models with a good fit
that are not the true model.

One reply to these concerns is that we need simple models. This
is something that is already widely acknowledged in econometrics.
For instance, while R2 is taken to be a good estimate of model fit,
when models get complex, econometric textbooks typically prescribe
adjustedR2 measures. AdjustedR2 takes into account, or punishes,
model size. So, in case a model fit,R2, is really good, but only the result
of the complexity of the model that we have created, our adjustedR2

will not be very high.
Remember the concept of Severity fromChapter 2. We can use this

concept in the context of modeling to assess how good econometrics
is at modeling the world. In this context, severity means:

Severity (modeling): if a theoretical model is incorrect,
it is unlikely that an econometric model based on this
theoretical model will fit the data well. If it is correct, it
is likely to fit the data well.

Whether fit is a severe test for the model’s accuracy, boils down to
the issue of how easy it is to achieve a good fit, if the model is actually
incorrect. One important aspect of this issue is that there are a number
of features that Keynes mentions that actually increase this probability.
For example, if we select time-lags based on which ones fit best with
the data, and our beginning and end points are also selected based on
what would work best with the data, we are making it more and more
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likely that the data will fit the model, even if it is not correctly specified.
Such choices are stacking the deck in our favor: it will be more and
more likely that our theory will fit the data, regardless of whether it is
the true model. This brings us to the problem of double counting.

Double counting

There is another general concern with econometric modeling that
Keynes does not explicitly address, but that play an important role in
econometric methodology: in order to assess the model fit, we first
need to estimate the parameters of the model α, β i, and e. We want to
know the model fit of this model: Y = α+ β iXi + e. We first need to
estimate parameter α, β i, and e. These parameter values are estimated
to maximize model fit. This process is called “model calibration”. We
can then assess how closely the model fits the data.

As you can see, this process uses the data in two ways: 1) to estimate
the free parameters, so that they model fit is maximized, and 2) to
assess the model fit. It is no wonder then, if the model fit is high: after
all, the model was constructed such that it would best fit with the data.

This is a bit like shooting on a wall, and then drawing a bull’s eye
around the bullet holes afterwards. Doing so is not exactly good evi-
dence that the person is a good shooter. Econometric modelling prac-
tice is not quite like that: in most contexts, a statistical model cannot
achieve a perfect fit through calibration. However, because the data
plays a role both in the construction and the testing of the model, we
can no longer see it as a neutral arbiter. A better analogy, then, would
be that of a figure skating match, in which one of the figure skaters is
also part of the jury.

This phenomenon of using the same data to construct a model
and using it to test the fit of the model, is called double counting.
According to some philosophers, double counting is improper and
should be avoided. Philosopher JohnWorrall, who is strongly inspired
by Karl Popper, argues for the following requirement, for all scientists:

Use novelty requirement (Worrall): for dataX to support hypoth-
esisH , or forX to be a good test ofH ,H should not only agree with
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or “fit” the evidenceX , butX itself must not have been used inH ’s
construction. (as summarized byMayo 2010, 156)

The rationale behind this requirement should be clear. If we formu-
late hypotheses using the data, the question whether the model will
“fit” with the data is not really a good test to assess whether it is true: it
is too easy. Double counting makes a test of model fit less severe. The
Use Novelty requirement has an intuitive appeal, but also far-reaching
consequences. After all, almost all econometric modeling in practice
violates it!

The Use Novelty requirement is controversial. There are many
examples from scientific practice of discoveries being inspired by the
same data that provided evidence for the hypothesis. For instance,
although the movements of the planets in our solar system repeat
themselves, we used these observations bothwhen formulating theories
of physics and as evidential support for them. Nevertheless, double
counting will generally have a negative effect on the severity of model
fit as a test for the model. It is better practice to use new evidence for
the testing of a hypothesis, that was not yet used for the construction
thereof.7

In macroeconomics, however, the data are scarce. And for severe
tests we also need sufficient data – a small sample will not be likely to
provide a severe test. New data only comes in once economies develop,
go through new boom and bust cycles, and develop new technologies.
However, certain economic events (e.g. oil crises) are quite rare, and it
may take a lot of time before enough new data becomes available that
can provide a severe test of the formulated hypotheses. For long-run

7 If you have paid attention toChapters 3 and 4, youwill not be surprised that whether
or not you agree with the use novelty requirement will dependent on whether you
are a Bayesian or a Classical Statistician. Bayesians believe that all data should play a
role in determining which theory is most plausible, while classical statisticians think
that data should only count if meets certain quality standards, such as coming from
a large enough, pre-determined sample, and only if it counts significantly against a
null hypothesis. The Use Novelty Requirement therefore fits better with Classical
Statistics, and not as well with Bayesian Statistics.
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growth models, it is inevitably true that it takes a lot of time before
new data points become available.

6 • solutions? theory, prediction, and robustness
checking.

How can macroeconomics make sure that the models that they con-
struct on the basis of the data are not “overfitted” and actually are
indications of true underlying economic phenomena? In other words,
how can we make sure that they do not only fit the existing data, but
also capture the true model?

A first thing that economists can do, is make sure that the models
that they construct are based on solid economic theory. If we have
really good theoretical reasons to believe that the variable setX i should
be included in the model, we have more confidence that model fit is
a good indication of the correctness of the model. However, theories
are often not sufficiently developed to tell us the exact set ofX i, or the
functional form of its coefficient.

A second thing is that true models should be able to predict. Predic-
tive success is a clear indication that a model is not merely a description
of a phenomenon in a particular time and place, but actually captures
the real thing. A test of predictive success is, in fact, a way to incorpo-
rate the Use Novelty Requirement.

How good are economic models actually at prediction? In the wake
of the 2008 financial and economic crisis, some commentators were
quick to the charge that economists had not predicted it. In fact,
Nobel Prize winner Paul Krugman wrote a critical piece in the New
York Times, called “How did economists get it so wrong?”. Krugman’s
explanation was very critical of the economic science:

“As I see it, the economics profession went astray be-
cause economists, as a group, mistook beauty, clad in
impressive-looking mathematics, for truth.”

Krugmanmay have been a little unfair to the economists. Prediction
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is hard for any science. Climate Scientists also leave large margins of
error in their projections, and weather forecasts still get it wrong some-
times, even for a couple of days into the future. Economic forecasts
are being used with quite some success to predict economic growth
for governments.

Whether a model is able to predict is generally a good test of that
model, because it can generally be seen as a very severe test: a prediction
test is very unlikely to be passed if a model is false. However, it still
requires the availability of new data, so that a model can predict it. In
some fields of research, such as long-run economic growth modeling,
this may take decades.

A much more common countermeasure for overfitting is what
economists call robustness checking. A robustness check is an adjust-
ment of one of the modeling assumptions. The check is successful
if the outcome of the model does not change in important ways. So,
for example, if we are concerned about the correctness of a linearity
assumption, we can assess whether our result changes if we change the
functional form and use some quadratic relationships or interaction
effects. If the result does not change, we can say that our model is
robust to changes in functional form.

We can also control for the beginning and end points in the data. If
we suspect, like Keynes did in the case of Tinbergen’s model, that the
result is driven by the specific beginning and endpoints, we simply use
different beginning and endpoints. If the results do not change, they
are robust to changes in the beginning and endpoints.

As a final example, Keynes was concerned with the specific variables
in Tinbergen’s model. This is actually a problem that often plays a role
in critical analyses of empirical economics. If we used a different set
of independent variables, the resulting coefficients could change. For
example, if we are interested in the relationship between educational
achievements and income, the coefficient that we use, changes if we
include the variables “age” and “worker experience” in the model. In
this case, our main interest is in one specific coefficient: the effect of
educational achievement on income. This coefficient may or may not
change if we add and deduct certain other independent variables in
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the model. If we find the same result in all these cases, we can say that
our result is robust to changes in the set of independent variables (or
robust to changes in the covariates).

Do robustness checks solve the problem of overfitting? Robustness
checks are generally seen as good practice, and many journals will ask
economists and econometricians to do them before publishing their
articles. But robustness checks do not provide guarantees. Robustness
checks are not based on new data, and can therefore not fully address
concerns about double counting. Nevertheless, a robustness check is a
way to make the result more severe. After all, robustness checks make
it more difficult for incorrect models to pass. If a false model only fits
because researchers have made an incorrect assumption, a robustness
check may help discover this.

Importantly, robustness checks can only be conducted with respect
to things that an economic modeler can actually control: the number
of included variables, the data points included in the analysis, etc. The
modeler can never check if the results are robust to changes that they
do have under their control: such as the inclusion of immeasurable
variables, or multicollinearity of variables included in the model.

7 • conclusion and brief summary

The difficulty of econometric modeling should not be underestimated.
As Keynes points out, the economic realm is complex. A model neces-
sarily simplifies this complexity: it will always misrepresent the world
to some extent, as econometric models will always make the economic
world simpler than it actually is. Nevertheless, this does not mean that
econometric models cannot correctly identify the relations between
important economic variables, and their magnitude (the oomph, as
McCloskey and Ziliak say, see chapter 2). But whether they do this
depends on the quality of the model.

Models are typically assessed by their model fit, as we have seen,
all econometric models involve double counting. Econometric mod-
els are based on observational data rather than experimental data, so
econometricians need to use the data twice: once for estimating the
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variables, and once for testing it. Double counting stacks the deck in
favor of the model and will make it likely that we will find a model
with a good model fit, even if the model is not correct. Because of
the problem of under-determination, an arbitrarily large number of
models may fit the data, most of which will not be correct descriptions
of the world. Some philosophers, such as JohnWorrall, think that we
always need new data to test models built on old data. One way to do
this is through predictive tests. However, if no future data is available,
robustness tests can help assess the sensitivity of the model to some of
the assumptions that a modeler needs to make.

learning goals for this chapter

After studying this chapter, you should be able to:

1. Describe the challenges that Keynes identified for Tinbergen’s
model, and, more generally, apply those challenges to econometric
modellig more generally.

2. Explain the concepts of under-determination, use novelty, overfit-
ting, and double counting, and explain their relationship

3. Explain different things a modeler may undertake to limit the chal-
lenges posed by Keynes, and the problem of under-determination.



6Multiple testing, the file drawer
problems, & meta-analysis

1 • multiple testing: the basics

Many of the problematic examples that we have seen when we were
looking at the classical approach to statistics in Chapter 3 had one
thing in common: a significant test may sometimes look like strong
evidence against a null hypothesis, but when it turns out that this
actually comes from a large sample of tests, the evidence is no longer
convincing. Mathematician Richard Gill calls this The Out of How
Many Principle. We have seen this in the following examples.

• A test that people are able to see into the future led to
a result that was significantly different from the null
hypothesis that people cannot see into the future (Bem
2011; see Section 2.1). This looks at good evidence
that people can see into the future. However, once
we learned that the researcher conducted 10 different
experiments, itwas less surprising that 1of them turned
out to be significant. After all, we statistically expect a
type 1 error once every twenty tests.

• Lucia deBerkwas significantlymore frequently present
at incidents in the hospital than we would expect un-
der the null hypothesis that she is innocent. However,
whenwe realize she is one out of 70,000 hospital nurses
working in the Netherlands at the time, we realize that

99
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it is not surprising that some of these 70,000 nurses
are present at incidents more frequently than average.
After all, we expect unlikely events to happen, when
an event is frequently repeated.

With any significance test that a researcher employs, there is an
expected number of false rejections, i.e. observing a p-value lower than
the significance level, even though the null hypothesis is true. For
example, if we do 1000 hypothesis tests of null hypotheses that are all
certainly true, we would still expect a number of rejections.

100 psychic tests. Imagine that we are testing which out
the one hundred students in a class have psychic abilities.
We will make each student predict a set of coin tosses in
another room that you are not able to see. Our hypothesis
is that no student is able to predict this, and all successes
are a result of chance. We reject at anα of 0.05. What will
we find? The expectation is that in these cases, we will
find about 5 rejections of our null hypothesis: a result
that should count as evidence against the null hypothesis
according to the classical approach to statistics. This
is because the α of 0.05 means that in 5% of the cases
will you find a value that is this far removed from the
hypothesized mean. If all hypotheses are true (i.e. no one
is psychic), this corresponds to the expectation of false
rejections.

In this example, it is not only likely that we will find rejections even
if our hypothesis is true, but it is even expected. This is a problem: the
problem of multiple testing. If we are doing a lot of tests, we will
expect to find some rejections, even if the hypotheses we are testing
are true. However, how do we know whether a rejection is simply a
result of the number of tests we run, or whether our rejection signifies
genuine evidence that our hypothesis is false.

Another way to put this is to formulate the problem in terms of
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figure 6.1 false positive rate and number of tests

the probability of making a false rejection (type 1 error). This type 1
error increases once we are conducting more and more hypotheses (see
Figure 6.1). After 100 tests, the probability of making at least 1 type 1
error is almost 1.

You may think that this is another argument for Bayesianism and
against classical statistics, but aswe shall see later, it is actually a problem
for both theories of statistical inference.

2 • corrections and families of tests

How to address the problem of multiple testing? There is a seemingly
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straightforward solution to the problem of multiple testing that is
common among statisticians: we can correct our α to reflect the fact
that this is not a singular test, but a test that is conducted in a family of
tests. If we do so, we can keep the probability of incorrectly rejection
a null hypothesis (type 1 errors) as low as 5%. These corrections thus
make a distinction between the probability of making a type 1 error
for hypothesis considered by itself, the standard α – which we can call
αid – that we are familiar with; and the probability of making a type 1
error considering that the test came from as set of tests, the familywise
error rate, αfw.

How does this work? In order to do so, we need to know (1) how
many hypotheses belong to the family of tests,m; and (2) what is the
desired false rejection (type 1 error) ratio for the family of tests, αfw.

In the case we discussed above, the desired αwas 5%, and the family
of tests consisted out of 100 tests. We cannowcalculate the cutoffpoint
of an individual p-value that would result in an overall probability of
type 1 errors of 5% in all these tests, taken as a whole. This is called the
Šidák correction:

αid = 1− (1− αfw)
1/m

In this particular case:

1− (1− 0.05)1/100 = 0.0005128

So, if we would use an individual p-value cutoff point for all these
100 tests of 0.0005128, there would only be a 5% chance of finding a
significant finding if all the null hypotheses were correct.

A simpler, and more common, approximation of the Šidák correc-
tion is called the Bonferroni correction:

αid =
αfw

m

which, in this case, would simply equal 0.05/100 = 0.0005. This
closely approximates the Šidák correction.

This mathematical solution is seemingly very effective, but there
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are two general problems, and as we shall see later, some problems
that are specific to economics. A first general problem is that while
these corrections keep the false rejections constant, it greatly increases
the probability of false non-rejections (type 2 errors). In other words,
it significantly reduces the power. Say someone in class is actually
psychic. In order to find a p-value at an individual 0.00005 level will
be difficult. It is thus much more likely that we will not reject, even if
the null hypothesis is actually false.

A second general problem is that we need to know what the family
of test is. Howmany tests are actually relevant for the comparison at
hand? This, it turns out, is muchmore difficult that it may at first sight
appear. We will discuss this issue below

3 • the look elsewhere effect and power

Before I go on to examine the philosophical problems with multiple
testing in the context of economics, we will discuss one important
example from physics. In 2008, the Large Hadron Collider in Geneva
began operating with an important mission: finding a particle that
was hypothesized to exist by what is called the standard model. The
alternative model was called theHiggsless model.

A large Hadron Collider is generating data from particles that are
accelerated with great energy. This data is statistical in nature (see Fig-
ure 6.2). The LHC began gathering data by running experiments at
different energy intensities. On some level of intensity, they would
expect the existence of the Higgs particle to create a significant devia-
tion from the Higgsless model (the red dotted line). So, the aim was to
find a statistically significant deviation from the Higgsless model on
some level of energy intensity. This meant that a large number of tests
needed to be conducted, at different energy intensities (the X-axis).

Because so many tests were conducted at different energy intensities,
the research teams working on discovering the Higgs boson corrected
formultiple testing. They called the problem of multiple testing the
look elsewhere effect. The reason for this is that someone finds a
deviation somewhere, but then discovers that other researchers have
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figure 6.2 Higgs boson discovery.

been looking for deviations elsewhere (say, at a p-value of 0.03), a
significant deviation may suddenly not be significant anymore, if a
corrected significance level is used. So, looking elsewhere may make
your significant finding insignificant, because we know that running
more tests should require a correction, and a correction will decrease
the individual cutoff value.

This problem, for the particle physicists, was not only a theoretical
problem. Louis Lyons, one of the statisticians at the project writes:
“we have all too often seen interesting effects at the 3σ or 4σ level go
away as more data are collected” (Lyons 2008, 904). Because of the
search conducted in the project, Lyons writes: “Thus the chance of a
5% fluctuation occurring somewhere in the data is much larger than
might at first appear.”

Ultimately, the researchers at the LHC went for a 5-sigma signifi-
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cance level (equal to a p-value of 0.000003), and found evidence for
the Higgs boson in April 2012.

4 • two questions about multiple testing in specific
for economics

The discovery of the Higgs Boson highlights some interesting but
troubling features of multiple testing in science. Multiple testing is
not limited to individual researchers, but may occur in a group of
researchers, even researchers that are not familiar with each other’s
searches.

In economics, things are different from physics, and this makes
it even more difficult to correct for multiple testing for two reasons.
This brings us to two problems related to multiple testing that are
specific to economics. It is perhaps clear that things work differently
in economics, but just to highlight why the statistical rigor used in the
Higgs boson example is not really possible in economics, we can run
through why this does could not really work.

For one, discoveries, and hypotheses tests, are not coordinated in
economics. Probably one significant reason for this is that while it is
extremely costly and difficult to do searches for evidence in particle
physics, the opposite is true formacroeconomics. Running a regression
on the data is very simple. And it would be very difficult for the science
of economics to keep track of all the individuals who are running
regressions and interpreting p-values. But, it would seem, that if we
want to be serious about multiple testing, this is what we need to know.
The question thus is: should economics coordinate its searches in the
data, so that it can take account of multiple testing?

A second issue is that macroeconomics is based on a limited dataset:
the economic data of the world as it is actually occurring in the world.
As we discussed in Chapter 5, macroeconomics cannot base itself on
designed experiments. We can only generate newmacroeconomic data
as fast as time goes (only 1 data point per annual data set per year).
At the same time, many economists use the same data set (data from
OECDcountries, theUnited States economy, etc.). In light ofmultiple
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testing this is problematic, because as we control for more and more
tests, the significance level required to keep the familywise error rate at
a constant level goes down, and more data is required to keep power at
a sufficiently high level. If we use small datasets and a significance level
that is very low, it is very unlikely that we will ever reject anything.

5 • what is a family of test exactly?

You may be surprised to learn that there is no clear answer to the
question what defines a family of tests. However, we do know two
important things:

• A family of tests is not limited to a single researcher.
Some families of tests include tests that different re-
searchers run. This is exactly where the look elsewhere
effect gets its name from. Exactly because multiple
testing is not limited to individual researchers that are
testing hypotheses, a search conducted by another re-
searcher may sometimes influence the significance level
that you should use. Think, for example, of our main
example that we discussed above: if instead of one re-
searcher, 100 researchers would conduct 100 tests, we
would be expected to find 5 significant findings.

• A family of tests is not limited to a single dataset.
Strictly speaking, the data set in 100 psychic tests above
are all different datasets. In search of the Higgs bo-
son, the researchers combined many different datasets.
Datasets thus also do not properly limit the family of
tests.

This means that any test that is run that is run to answer a specific
research question can be part of the family of a test. As long as we
are answering the same research question, all the tests that are run on
this research question, by us or others that we do not know about, we
should take this into account in our family of tests.
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Take our example 100 psychic tests, if we would be asking different
questions every time: “Is student A psychic?”, “Is student B psychic?”,
etc., these are all different research questions. And, for all these indi-
vidual questions, the error rate will be 5% when we use a significance
level of 5%. But, when we ask the more general question: “Are any of
the students in class psychic?”, we should use a familywise error rate,
because we have to take account of the fact that we are expected to find
false rejections, even if all null hypotheses are true.

This illustrates how difficult it is in practice to properly account
for multiple testing. One of the reasons for this is related to the way
that science is organized. Typically, in most statistical sciences, only
the significant results get published. So, even if 95 of our significance
test are insignificant, other researchers will only see our 5 significance
tests that are significant that possibly get published. So, even if all
the null hypotheses are true, we expect that some significant tests will
be published, even though these are false rejections. We expect this,
even when 100 researchers are all investigating their single hypotheses.
Unbeknownst to any of these 100 researchers, the tests that they run
are therefore part of a family of tests, and the 5 significant tests are not
an indication that something truly significant has occurred. This is
called the file drawer problem.

6 • publication bias and the file drawer problem

In a paper from 1979, statisticians Robert Rosenthal discussed a prob-
lem in the evaluation of statistical research: in order to be publishable,
a finding generally has to be statistically significant. But what happens
to the findings that were not significant? They disappear in metaphor-
ical (or literal) file drawers. This means that the economics findings
that end up in scientific papers are a biased subset of all the findings of
economists. For our example above, an unrealistic extreme example,
this wouldmean that we would be able to publish 5 papers with signifi-
cant findings about the psychic abilities of econometrics students. But
this would give an awfully bad reflection of what the evidence really is.
The effect of the file drawer problem is that we will only be able to see
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the significant results, but without knowing what the positive results
are, we have a biased perspective on the evidence. This bias is called
publication bias.

To summarize: the problem of multiple testing shows us that we
don’t only need to know if, and howmany, significant tests we find,
but also howmany non-significant tests we find. However, due to file
drawer problem, we do not know what the amount of non-significant
tests is, and this selective presentation of evidence is called publication
bias.

How bad is the problem of publication bias? This is very difficult
to know. It depends on (1) howmany tests are run, and (2) what is the
power of the tests? Or, to put this alternatively: how many of the null
hypotheses are actually true?

Imagine our main example, but in this case, half of the students
actually are psychic. If the power of our test is 0.8, we would find

False reject: 50 ∗ 0.05 = 2.5

False non-reject: 50 ∗ 0.2 = 10

Correct reject: 50− 10 = 40

Correct non-reject: 50− 2.5 = 47.5

Sowewould in total observe 42.5 rejections, and 57.5 non-rejections.
Out of these rejections, only 2.5 are false rejections, so out of all the
individuals that the test would identify as psychic, only 2.5%/42% =
6.25% are incorrectly identified as psychic. That is not that bad. In
the initial case, all (100%) of the rejections were false rejection! The
extent of the problem depends on howmany of the hypotheses we are
testing are actually true. Or, in other words, it depends on the prior
probability of the hypotheses.

This may sound like Bayesians have an advantage here, but the prior
probability that a random hypothesis that is being tested in an econo-
metric study is true or false is an uncertain probability. In other words,
there is no statistical basis for having a justified belief about whether
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a hypothesis is true, before we test that hypothesis.8 So, regardless
of whether you are Bayesian or not, it is difficult to know howmany
non-significant findings lie behind every significant one. Bayesians
may take account of it in their priors, but this will be based on a guess
of howmany hypotheses are actually true, or false.

It is good to note that the file drawer problem comes up, even when
economists have the best of intentions. No fraud, or deliberate at-
tempts to manipulate the results are necessary to get at the expectation
that a non-trivial number of findings (p<.05) will be statistical arte-
facts. But, we also know that researchers do face significant pressure
to publish, and publishing typically requires significant results. We
typically assume that fraud does not happen in scientific inquiry. Re-
searchers are supposed to be interested in the truth, and fraud means
lying, the deliberate obfuscation of truth. Even the Reinhart &Rogoff
controversy, described in the introduction, was apparently based on
an honest mistake. But fraud does happen. In 2021, some researchers
found that a 2012 study co-authored by world renown economist Dan
Ariely on honest (I do not make this up), was based on fraudulent
data (Shu et al. 2012 for the now retracted study; see Stern 2023 for
a journalistic account; and see Ritchie 2020 for an excellent book on
this general problem in science). But even without outright fraud,
the pressure to publish statistically significant results can affect the
family-wise error rate of the whole field in other ways. In a survey from
2014 among academic economists, 32% said that they “[p]resented
empirical findings selectively so that they confirm one’s argument”,

8 In the 100 psychic test case, a Bayesian would say that we have good reasons to believe
that none of the hypotheses are true. After all, we have never found evidence for any
psychic ability in anyone, so it would be rather odd if we would find it now: our
prior would have to be low. However, even so, for any individual hypothesis, we are
expected to observe some particularly low values of (E|H) if we conduct many tests.
So, while the Bayesian can say that there is, after the test, still a small probability of
any of the individuals being psychic, they would have to accept that for at least some
of the individuals, the posterior probability of the hypothesis that the individual is
psychic would be much higher than the priors. So, this is a problem for both theories
of statistical evidence.
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and 38% agreed that they had “[s]topped statistical analysis when you
had a desired result” (Necker 2014; discussed in Ritchie 2020, 97).
If we take this into account, the likelihood that our findings (P<.05)
represent statistical artefacts only increases further. Moreover, if we
follow such strategies, false rejections (and false non-rejections) will be
particularly biased in a way that fits with the interest, or bias, of the
researcher conducting them.

7 • sum-up so far

Multiple testing is a difficult problem in econometrics. While it is rela-
tively easy to adjust your α in case you know what your family of tests
is, this has two significant disadvantages. For one, it will significantly
reduce the power of your test: because the required p-value is so low, it
will be less likely to discover false hypotheses. Second, it is very difficult
to determine what the familywise error is for specific estimations. The
familywise error rate requires us to know howmany tests were run in
total on a specific research question, but the file drawer problemmakes
this practically impossible. Without adjusting the error rates for our
family of tests, it is difficult to know how reliable our statistical find-
ings really are. If we take into account that there is significant pressure
on academic economists to find statistically significant findings, we
should be all the more concerned about the significant p-values that
this results in.

8 • a new hope: meta-analysis and funnel graphs

Is there nothing that science can do about this problem? There is some-
thing, and it is calledmeta-analysis: the evaluation of sets of different
statistical findings about the same research question. Meta-analysis
refers to a wide-ranging set of methods to evaluate the following ques-
tion: different published results find different estimates when they are
estimating the same coefficient or other parameter in a statistical study.
Sometimes they are significant, sometimes not. They may even some-
times be positive, and other times negative. What should we conclude
from all these different studies?
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figure 6.3 Union productivity partial correlations estimates and their

standard errors (from Stanley and Doucouliagos 2010).

Meta-analysis can actually help with accounting for publication bias
in two ways. It can estimate, or illustrate, whether there is publication
bias, and how bad the problem is. It can also, at least in part, correct
for it.

Meta-analysis requires a set of estimates from other studies. This al-
lows us tomake funnel graphs. Funnel graphs picture a set of findings:
their estimates on the x-axis, and a measure of precision on the y-axis.
This measure of precision is generally 1 divided by the standard error
of the estimation, or 1/SE. The higher this number, the more precise
we would expect our estimate to be. If there would be no publication
bias, we would expect a funnel graph to look like the first figure (Figure
6.3): the more precise an estimate is, the more closely we would expect
it to lie to the true value, and less precise estimates we would expect
to be distributed around this value. In case there is publication bias
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as a result of the fact that only significant results get published, we
would expect imprecise estimates, so estimates at the lower end of this
graph, to drop out. This, however, is not a problem for the picture
as a whole, if the unpublished results are not biased in a particular
direction. In case of unbiased publication bias, we should expect that
the true estimate will lie somewhere in the center point of a symmetric
funnel graph.

However, in some cases, publication bias may skew the results. If
so, we see something else. Figure 6.4 is an example of this. There is big
gap in the literature where we would expect some findings, just to the
right of the zero-line. This graph is depiction of estimates about the
price elasticity of water. The most precise estimates are, as we would
expect, quite close to 0, but slightly negative. However, there are almost
no positive estimates, even though we do see quite a few much more
negative, less precise, estimates. Why do we not see any slightly positive
estimates? Probably because researchers would be highly surprised to
find that a positive price elasticity for water demand: when water costs
more, would people consume more of it?(!)

Consequently, results that find such a surprising finding will be
unlikely to publish their results, and if they try, are more likely to get
rejected. This, however, creates a clear publication bias for negative
estimates. If we would only look at the average of the estimates as a
whole, however, not taking into account the precision of the estimates,
we would highly exaggerate the negative effect of water prices on water
demand.

The graph in figure 6.4 is a clear depiction of publication bias. It
shows that some results simply do not get published, even though
they are there: there simply is no statistical explanation of why a graph
would have such a gap as it has in figure 6.4. In many cases, things will
be more subtle. See the final graph: figure 6.5. This is a depiction of
research estimates that are published about the relationship between
minimumwage and unemployment. As you can see, the number of
studies is high. We can also see that the reliable estimates center quite
closely around 0. Nevertheless, the largest body of the data are negative
estimates. There are also some positive estimates, but the negative ones
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figure 6.4 Estimates of price elasticities for water demand and their

standard errors (from Stanley and Doucouliagos 2010).

are highly outnumbered by the positive estimates. However, the graph
is clearly skewed. There is no explanation for this skewed relationship
except for publication bias. In other words, positive estimates are less
likely to be published.

What this discussion shows is that funnel graph can actually help
us detect publication bias. And it seems that the problems are indeed
there. Non-significant results may be less likely to get published, but
we can also see that results that do not fit with particular theoretical
assertions are less likely to get published. The combination of these two
observationsmay lead to a significant bias in the published econometric
results.

However, funnel graphs also show that estimates of coefficients can
be gathered from focusing on the most reliable estimates. The more
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figure 6.5 Estimates of the effect of minimumwage of unemployment

and their standard errors (from Stanley and Doucouliagos 2010)

reliable they are, the more they center around a specific mean, that
seems to be a good indication of a true mean.

Funnel graphs are a good indication, but they also have a significant
drawback. They can only be made in fields of research in which a lot
of data is available. If we are interested in relatively unexplored topics,
it is more difficult to estimate what the impact of multiple testing is, or
will be. This is particularly a problem for fields of economics in which
the data availability is quite low. In all these examples of the funnel
graphs, a lot of studies were available. However, in some fields of study,
the data availability is much smaller.

9 • conclusion

Running multiple tests at the same time has an important influence
on the reliability of a statistical inference, and when this happens, we
have to interpret the results differently. When we have clearly defined



6 multiple testing, file drawer problems, & meta-analysis 115

family of test, this is fairly straightforward. We can simply use a family-
wise error rate. However, in economic practice, it is both difficult to
interpret what a family of test should be, and to have the information
available that is required for calculating the family of test.

Funnel graphs give an indicationofwhether there is a clear bias in the
published literature, at least in case a sufficient amount of results have
been published. As it turns out, publication bias can be a significant
factor, although funnel graph can help us identify where biases lie. The
file drawer problem shows how important meta-analyses are.

This leaves a reduced, but significant set of econometric tests to be
liable to issues of multiple testing and publication bias: cases in which
the samples are limited. This seems particularly problematic in fields
of macroeconomic in which the same datasets are used repeatedly. The
example of empirical studies of long-run economic growth is one such
example. In these cases, even if there are different researchers that calcu-
late different coefficients, these coefficients are all based on the same or
overlapping datasets, and will thus be dependent on each other. Com-
ing upwith an estimate of publication bias will bemuchmore difficult.
In these cases, the interpretation of p-values, and the specification of a
proper significance level, leaves much room for debate.

learning goals for this chapter

After studying this chapter, you should be able to:

1. Explain the concept of multiple testing, and why it is a threat to
statistical inference.

2. Explain how we can correct for multiple testing, and explain the
concept of a family of tests.

3. Explain the look elsewhere effect and its relation tomultiple testing.
4. Explain the concept of the file drawer problem, and publication

bias, and explain howmeta-analyses, and funnel graphs can detect
biases.
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1 • causality: a challenge for econometricians

You may remember from our discussion about Keynes in Chapter 5
that Keynes took the goal of economics to be the discovery of the causal
relationships. To cause something is to do something that has an effect.
Textbook writer Jeffrey Wooldridge agrees:

“In most tests of economic theory, and certainly for
evaluating public policy, the economist’s goal is to infer
that one variable (such as education) has a causal effect
on another variable (such as worker productivity).”
(Wooldridge 2009, 12)

For example, we want to:

• estimate financial returns, in order to increase profits;
• estimate the effect of minimum wage on unemploy-
ment in order to implement the minimumwage level
that is most desirable;

• establish which variables determine economic growth,
in order to increase economic growth.

In all these cases, our ultimate interest is to obtain knowledge of
causal relationships.

As we get taught in our introduction to statistics classes: correlation
does not imply causality. At the same time, in order to be useful, in
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order to have economic significance, statistical findings need to tell us
something about causality. Ultimately, statistical findings in economics
derive their importance only from the way they help us change the
world. In order to change the world in predictable ways, we need to
have causal knowledge.

Think of an example in which there is a correlation but no causality.
The price of bread and gross GDP are correlated over time in almost
all countries, because both are upward trending. However, it is not
true that increasing the price of bread will increase GDP in important
ways. This correlation, then, is not useful: if we want to increase
GDP, this finding does not have any policy implications. Without
knowledge about causality, correlations do not give policy makers any
useful information for guiding policies.

Because correlation does not imply causality, the official line is that
econometricians should be careful with deriving causality from the ob-
served correlations and model fit: in principle, doing so is not possible
and should be avoided. However, there is nevertheless much language
use in econometrics that betrays that the ultimate aim is to learn about
causality in theworld. For example, the notion of an “effect size” clearly
hints at the idea that the coefficient does not merely indicate a condi-
tional correlation coefficient, but that there is an effect, or, in other
words, a causal relation. The same is true when econometricians say
that one variable “affects”, or “influences” another. In fact, the whole
notion of a dependent variable derives from the idea that this vari-
able depends on the independent variables. All of these notions are
instances of what we may call causal language.

This causal language is only a symptom of a more general tension
that econometricians have to deal with. We can call this the econome-
trician’s causality tension:

1. What we can observe in economic data are correla-
tions.

2. Correlation does not imply causality.
3. Ultimately, we want to knowwhat the causal relation-

ships are in economics.
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In otherwords, correlations do not get us causation, but correlations
without causation is not useful. In this final chapter, we will analyze
this tension, and see if there is anything we can do to alleviate it. We
have already discussed Point 3. What we now turn to Point 1: what is
causality, and why is it so difficult to observe? In doing so, we look at
the philosophical problem of causality. As we will see, in some cases,
we can infer causality from the data, even though this is not often
true for economic data in general. Secondly, we will discuss Point 2:
does correlation really not imply causality? Perhaps our statistics 101
teachers have been a bit too quick here. Finally, we will discuss how
this relates to econometric practice. How good are econometricians at
observing causality?

2 • the problem of causality

One of the most influential thinkers shaping our understanding of
causality was Scottish philosopher, and good friend of economist
Adam Smith, David Hume (1711-1776). David Hume was troubled
by the concept of causality. Take for instance the following question:
when I hit a pool ball with my pool stick, will it move? The simple
answer to these questions, of course, is yes. But why are we so certain
of this? We know that statements like these are true, because of the
regularity we observe in the world. Whenever a round ball, that is not
glued or stuck to the floor, is hit with some force, it moves. The force
on the ball causes it tomove. However,Hume observed, we never really
observe this causality. What we do observe is a sequence of events that
always occur after each other:

Event 1: the ball is pushed

Event 2: the ball moves

What we do not see is causality itself. This problem has come to be
known as Hume’s problem of causality. We only see events that are
what Hume calls spatio-temporally contiguous: they happen right
after each other, the effect following the cause, at the same location.



120 the philosophy of econometrics

However, not everything that always happens at the same time and
place has a direct causal link. For example, hemlock is a poisonous plant
that has a peculiar taste. If you eat it, you will experience this taste,
after which you die. This taste then always comes before the poisonous
reaction. However, this taste does not cause you to die. It is a mere
byproduct of the plant, whose poison kills you. So, spatio-termporal
contiguity is not itself sufficient for causality. But how do we know
that something causes something else?

What causality means then, according to Hume, is just following
(Reiss 2013):

X is a cause of Y if and only if:

• X is universally associated with Y;
• Y follows X in time;
• X and Y are spatio-temporally contiguous, i.e. there
are no time-wise or space-wise gaps between X and Y.

This also shows that there is a problem, because we cannot observe
“universal association”. The problem of causality is that we often see
things happening after each other, but that we cannot see causality
itself. This problem should be familiar to you: it is a particular variant
of the problem of induction. When we say that a push on a ball forces
it to move, is to say that in the same conditions, a push on a ball will
always result this ball tomove. In other words, a causal claim is always a
generalization. And, as the problem of induction shows, we can never
derive a generalization from particular observations. As causal claims
are types of generalizations, it seems that we cannot derive causality
from observations.

Hume was an empiricist: someone who believed that empirical
observations are the only reliable tool for learning about the world.
But empiricism runs into trouble if it wants to establish causality. If
we want to base ourselves on observations, we can never truly observe
causality, the thing that ultimately matters.



7 causality 121

3 • the practical problem of causality

This problem so far seems purely philosophical: will the ball move if I
push it? Of course! Only philosophers can take such question seriously.
However, there is also a practical problem related to causality that
are the result of the fact that we cannot observe causality itself. This
practical problem is that we can observe correlations, but correlations
do not provide sufficient information to determine causal relationships
by themselves.

Think about our now familiar example of minimumwage and un-
employment: if we increase the minimumwage, will unemployment
increase, and if so, by howmuch? Even if minimumwage and unem-
ployment move together, we cannot tell that this is because minimum
wage increases unemployment. While wemay think that a higher mini-
mumwage causes there to bemore unemployment, there may be other
causal effects occurring that are mitigating or amplifying this causal
effect in the data. For example (with a “–“ indicating a mitigation, a
“+” an amplification):

• whenever unemployment is low, governments imple-
ment higher minimumwages (-);

• whenever there are progressive governments, mini-
mum wages go up, but progressive governments are
more likely to be elected in economic downturns (+);

• minimum wages increases total consumption, stim-
ulating economic activity, and decreasing unemploy-
ment (-).

These other causal factors may make it more difficult to detect the
causal effect of interest in the data. After all, which part of the corre-
lation, if there is any correlation, can be ascribed the causal effect of
interest, and which part cannot?

4 • apriorism

Some economists and some philosophers think that we just have to
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accept that we cannot observe causality, and observations will not
help us identify causal relationships. Rather, our judgments about
causality should not come from observing the world, but from our
understanding of economic theory. This view is called apriorism, from
the latin “a priori”, which means “before the evidence”. Theories,
apriorists claim, can be derived without observations. One example of
how this type of reasoning can help us determine causal relationship is
the example of economic theories of rational behavior. It is difficult to
determine howmuch a price increase will affect demand, but we know
from theory, i.e. before making any observations, that it will have a
negative effect on demand. After all, we can know, before the evidence,
that it is rational to we prefer having more money rather than less. If
people are indeed somewhat rational, an increase in price should lead
to a decrease in demand. These thinkers claim that all reliable causal
knowledge comes from theory.

This solution is less than satisfying. After all, when econometri-
cians are advising policymakers on whether to increase minimumwage
or not, we want our answer to be “evidence-based”: justified by the
evidence. It is notable that some theory-minded economists were ex-
tremely skeptical of Card andKrueger’s minimumwage study, because
they figured that it is an a priori fact that higher wages should lead to
a lower demand for workers. Nobel prize winning economist James
Buchanan wrote in the Wall Street Journal:

“The inverse relationship between quantity demanded and price is
the core proposition in economic science, which embodies the presup-
position that human choice behavior is sufficiently rational to allow
predictions to be made. Just as no physicist would claim that “water
runs uphill,” no self-respecting economist would claim that increases
in the minimum wage increase employment.” (Wall Street Journal
1996)

The problem with such a strong faith in economic theory is that
economic theory nowbecomes scientifically instructinable by evidence.
Even physics should be open to the possibility that someone discovers
water that runs uphill, and that we should consequently revise our
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theories. Even if theory plays a role in reasoning about causality, we
should acknowledge that theory is fallible.

5 • john stuart mill's solution: experimentation

If we cannot observe causality, how can we ever be sure that one thing
causes anther? 19th century philosopher-economist John Stuart Mill
(1806-1873) presents an important solution to this problem. Mill
called his solution the method of difference:

Method of difference: If two cases are exactly the same,
except for 1 thing,C , and two different outcomes result
from these two cases, than we know the difference be-
tween these two cases was caused byC .

Mill’s method of difference is essentially what has come to be the
underlying inferential method of experiments. For example, in medi-
cal experiments, experimenters generally give two randomly assigned
treatment groups two different treatments: one placebo, and one new
medication. If the group that got the newmedication did better, this
must be caused by the newmedication. After all, the groups are exactly
the same, except for 1 factor: the pill. The different outcomemust
logically be caused by this one factor.

Mill’s method of difference is remarkable. Even though it does not
solve Hume’s problem entirely, after all, a staunch sceptic will say that
it still does not allow us to observe causes, it helps us capture them in an
resourceful way. Themethod of differences leaves no other explanation
except for the fact that the difference must be due to the one factor
that is different.

The experimentalmethod lies at the basis ofmuch scientificmethod-
ology, but, we have also seen that in econometrics, doing experiments is
difficult. The limitation of the method of difference is that it requires
us to be sure there really is no other factor that we have not considered,
that could be driving the different outcomes? We call such factors
confounding factors:
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Confounding factor: If two cases are the same, except for
2 things,C andConfounding Factor, and two different
outcomes result from these two cases, than we do not
know whether the different result was due toC or due
to Confounding Factor.

The problemwith confounding factors in econometrics is that there
are always some possible difference between two groups , and it is diffi-
cult to establish that two cases are exactly the same except for one factor.
For example, if we do an experiment by assigning different companies
different minimumwages to implement, a skeptic can always say that
the companies were on some level different. For example, one could
claim that all the companies that accepted the invitation in the exper-
iment were the companies that had a particularly friendly managing
style, biasing the results. Or we can imagine that the randomization
did not equalize all the relevant differences: the companies that got
assigned a particular minimumwage were more often in the east of the
country, where the costumers are wealthier, biasing the results.

In macroeconomics, we rarely encounter cases that fit perfectly with
Mill’s method of difference. However, some econometricians believe
that we should still try to emulate this model as much as possible.
Below,wewill explore towhat extentMill’smethod canhelpus identify
causes in economics.

6 • correlation and causation: the reichenbach
principle

Mill’s method of difference alleviates some philosophical skepticism
about causality. Is there any other way in which we can identify causes
in economics? Oneway to do so is to return to the relationship between
correlation and causation. They are not the same, but can we really
not learn anything about causality from correlations?

Why does correlation not imply causation? One common example
to illustrate this is the following:

Ice cream sales correlates with forest fires (see figure 7.1
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below). Therefore, forest fires are caused by ice cream
consumption.

Clearly, reducing ice cream consumption will not affect forest fires
in any way: the causal relationship is not in any way genuine. However,
it is still too simple to say that there is no causal relationship here. The
causality, however, comes from another, third, factor: temperature.
Is that what is going on in all cases in which there is a correlation
that is not causal in the expected way? There is simply a third factor?
Correlation then does imply causation, but not always the one that you
may think of at first.

German philosopher Hans Reichenbach formulated the following
principle to connect correlations and causation:
Reichenbach principle: Any two variablesA andB are correlated

if and only if either (i) A causes B, (ii) B causes A, (iii) a common
causeC causes bothA andB, or (iv) any combination of (i)–(iii).

If Reichenbach is right, correlations do imply causation, just not
always the ones that you expect. Let’s go over these options in turn.

figure 7.1 Forest fires and the sale of ice cream through time. Re-

trieved from https://www.decisionskills.com/blog/how-ice-cream-kills-

understanding-cause-and-effect.

https://www.decisionskills.com/blog/how-ice-cream-kills-understanding-cause-and-effect
https://www.decisionskills.com/blog/how-ice-cream-kills-understanding-cause-and-effect
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Consider our example here: variableA is ice cream, variableB is forest
fires. As we know, they are correlated. The possibilities are:

1. forest fires cause ice cream consumption;
2. ice cream consumption cause forest fires;
3. a common cause (a third factor) causes them both;
4. a combination of these three.

Clearly, 2 is false, and 1 as well. However, indeed, a common cause,
namely temperature, affects them both. This principlean thus help
us identify causation in the world. Even though we cannot derive
causation from correlations directly, it can identify a small range of
possible causal relationships that must be there.

There are, however, three exceptions to the Reichenbach principle.
First, see the following graph of the US GDP and GNP. They are, to
put it mildly, highly correlated.

figure 7.2 The correlation between GDP and GNP.

Nevertheless, it would be very odd to say that GDP and GNP are
causally related. The reason for that is that they are simply highly
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overlapping by definition. Their relationship is close, but it is not a
causal relationship, but a constitutive relationship: they are defined
in almost the same way. A similar relationship exists between number
of individuals unemployed in Germany, and number of individuals
unemployed in the EU. This relationship will correlate, though much
less thanGNP andGDP, but not because they are causally related. The
first is simply partly made up of the same information as the second.

Second, consider the correlation that we have discussed between the
movements of Paul the Octopus, and the country winning in matches
in the 2010World Cup. While the correlation was perfect, and statis-
tically significant, we realized that we do not have much trust in the
results. Another example is the graph below that illustrates the correla-
tion between age of Miss America and murders by steam, hot vapours,
and hot objects. If the Reichbach principle would apply here, either
the age of Miss America would cause these murders, these murders
would cause the age of Miss America, there would be a common cause,
or a combination of these. None of these seem particularly plausible.
So, what is going wrong?

These examples, are examples of spurious correlations.

figure 7.3 A spurious correlation. Retrieved from: https://tylervi-

gen.com/view_correlation?id=2948.

https://tylervigen.com/view_correlation?id=2948
https://tylervigen.com/view_correlation?id=2948
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Spurious correlations: correlations that are solely the
result of coincidental concurrences.

How can I be sure that this is the case? Identifying spurious corre-
lations is difficult, but they have a couple of features. Spurious corre-
lations tend to be based on small samples, are derived frommultiple
correlations (called “data dredging”, or “p-hacking”), or, even more
commonly, both. The larger a sample is, the less likely it is that we
would observe a spurious correlation. Spurious correlations are also
coincidental, so, if a correlation is spurious, the relationship is expected
to be absent in new incoming data. This is one motivation for the use
novelty requirement from Chapter 5.

A third category of exceptions to the Reichenbach principle may
look similar to the second. For example, take a look at the following
relationship:

figure 7.4 Two time-trended variables. Retrieved from: https://tylervi-

gen.com/view_correlation?id=1597.

Clearly these two variables are not causally related in anymeaningful
sense. Another influential case similar to this one is the correlation
between the sea levels in Venice, that are increasing over time, and the
bread prices in the UK, which are also increasing over time. What is
different in these cases compared to the second exception? If more data

https://tylervigen.com/view_correlation?id=1597
https://tylervigen.com/view_correlation?id=1597
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comes in, this relationship is unlikely to disappear. The United States
is increasingly spending more money on science, space, and technol-
ogy. And, unfortunately, suicide rates are also up in the Unites States.
The bread price is expected to keep increasing, just as the sea levels
in Venice. Nevertheless, their relationship is still clearly not causal in
any meaningful sense. The problem is that both these variables simply
have a time-trend. Time-trends are very likely to have a relationship
to each other, even if there is no causal relationship between them
whatsoever.9

There is a way to avoid this category of exceptions. We can note
that these two variables – US spending on science and technology, and
suicides by hanging, etc. – are not really correlated in a meaningful
way, because they are not co-integrated. Co-integration means that if
we remove the time trend, the correlations persist. In these examples,
this is not likely. The price of bread may particularly increase as a
result of a good harvest season, but the sea levels in Venice will not
respond to the same shifts. While this is a good way to test if a trended
variable is meaningfully correlated with another trended variable, the
Reichenbach principle is formulated about correlations in general, and
therefore, the third exception remains an exception to this principle.

To sum up, correlations imply causation in some sense: ifA andB
are correlated, they are causally related, or there is a common cause.
But there are three exceptions to this rule: definitional relationships,
spurious correlations , and time-trended data

7 • econometrics and causality: natural experiments
and instrumental variables

As helpful as the Reichenbach principle may appear, it still leaves too

9 Someonemay object and say that this is not actually an exception to theReichenbach
principle: time is the common cause in this case. Time is the cause of suicide rates
going up, as well as the spending on technology and science going up. However,
time itself is not generally seen as a cause itself: rather, it is a dimension in which
causes operate, just like “space” is not a cause itself, it is simply background needed
for causes to operate in.
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figure 7.5 A model of economic growth.

many options open in order to be result in economically useful causal
knowledge. Consider, for example, the relationship between trade
and growth in international economics. There is a strong correlation
between economies that trade and that grow. However, the correlation
cannot easily be interpreted as a causal effect of trade on growth, be-
cause trade does not only positively affect growth, but economies that
grow, may also trade more. In other words, there is reverse causality.
Moreover, there are also other variables that are a common cause, such
as technology: more technology is good for economic growth, butmay
also stimulate economic trade relations, for example, through making
it easier to import goods over the internet. Even if the Reichenbach
principle applies, we still want to know which particular relationship
lies behind this correlation (see figure 7.5).

What can econometricians do? As we have already seen, Mill’s
method of difference is difficult to apply to macroeconomics on a large
scale. However, in some rare occasions, natural experiments occur.
Natural experiments are non-artificial cases that closely resemble exper-
imental set-ups. In the language ofMill: cases inwhich, by coincidence,
we have two cases that are similar in all respects, except 1.

One example of this the closing of the Suez Canal, a politically
motivated event, in which Egypt, as a result of a conflict with Israel
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and theWestern Nations, closed the Suez Canal for 8 years (from 1967
to 1975; Feyrer 2009). This created a situation in which for about half
of the world, the main trading routes suddenly became a lot longer for
8 years, for the other, the main trading routes were not affected (see
figure 7.6 below).

Economist James Feyrer thought that this would make an excel-
lent natural experiment for assessing the impact of trade on economic
growth. The impact difference in economic growth between these
two countries over the years can then, perhaps, be described as a causal
effect of the extending trade routes:

Group 1: countries whose trade routes were affected by
the closing of the Suez Canal;

Group 2: countries whose trade routes were not affected
by the closing of the Suez Canal;

There are no further relevant differences between group
1 and 2.

figure 7.6 An example of increased travel distance between two

cities as a result of the closing of the Suez Canal. Retrieved from:

https://cepr.org/voxeu/columns/1967-75-suez-canal-closure-lessons-

trade-and-trade-income-link.

https://cepr.org/voxeu/columns/1967-75-suez-canal-closure-lessons-trade-and-trade-income-link
https://cepr.org/voxeu/columns/1967-75-suez-canal-closure-lessons-trade-and-trade-income-link
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The difference in economic growth between these two groups of
countries can thus be ascribed to the causal effect of the extension of
trading routes. Two caveats apply. First, in reality, these two groups
of countries will, in many ways, be different. However, because the
differences between these countries are random, their differences can
be argued to not affect this analysis in an important way. So, while the
experiment is not perfect, this natural experiment, closely resembles
Mill’s method of difference, and consequently, is likely to identify an
effect that is causal.

Second, in reality, the difference between group 1 and group 2 is not
strict, but differs by degree. However, for the identification of causality,
this does notmatter. Natural experiments createwhat econometricians
call exogenous variation. Exogenous variation is the type of variation
that is independent of anything else in the model. In our example,
independent of economic growth, and technology (and other factors
that may affect both growth and trade). This feature helps us estimate
the causal effect of trade on growth. After all, the closing of the Suez
Canal affected trade routes, the trades routes affect growth, and there
is no reverse causality or another common cause (see Figure 7.7). So,
the correlation that we observe here is genuinely causal.

We call this method of identifying causality through exogenous
variation this way the instrumental variables approach, and we can
call the variable that creates the exogenous variation the instrumental

figure 7.7 The relationship between trade route length, trade, economic

growth, and omitted variables.
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variable, or IV. Instrumental variables essentially apply the same logic
as (natural) experiments, but rather than looking for events that bring
about a difference in theworld, they look at variables that bring about a
specific effect in theworld, namely, an exogenous variation. Exogenous
variation is always present in (natural) experiments, but it may also
exist outside of setting that is properly described as an experiment. We
can define instrumental variables formally as follows: a variableZ is an
instrumental variable if and only if:

1. Z causes the independent variable (in this case, trade);
2. Z affects the dependent variable, if at all, only through the inde-

pendent variable;
3. Z is not itself caused by the dependent variable or by a factor that

also affects the dependent variable.

The logic behind IV’s is as follows: if variableZ is correlated with
both the independent variable of interest and the dependent variable,
then, there is no other explanation except for the fact that it is causal.
After all, Condition C rules out that there this correlation is explained
in another way.

Instrumental variables are not easy to come by, few variables are
exogenous in the right way, and they often are quite ingenuous. Here
is another example.

Education affects earnings, but earnings and education also have
a common cause: ability. So, the correlation between earnings and
education may be a reflection of the fact that those who have a high
ability at certain (intellectual) tasks are justmore likely tomake a higher
earning later. It turns out that students who are born in January,
February, and March do better in school, because they are generally
admitted in a class with younger students. However, the month in
which you are born is not related to your general innate ability. Thus,
being born in fall is an instrumental variable for estimating the effect
of education on earnings (this study was conducted by Angrist and
Keueger 1991).

When such exogenous variation can be found, a strong argument
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can bemade for causality. However, if the assumptions are not satisfied
(Conditions A-C), the argument fails. One of the most focal critics of
IV’s is Nobel Prize winner Angus Deaton. He argues that most IV’s
only appear to satisfy Conditions A-C, but in fact, do not (Deaton
2010). For example, while being born in fall seems to be a good IV, its
effect on income may not only be caused through educational success:
relatively older children may also learn other skills better than younger
ones, for example, leadership skills and assertiveness. If that is so, being
born in fall is not, in fact, a good IV for learning about the effect
educational achievement has on income.

8 • conclusion and summary

We started this chapter with the problem of causality tension:

1. What we can observe in economic data are correlations.
2. Correlation does not imply causality.
3. Ultimately, we want to know what the causal relationships are in

economics.

This seemed troublesome, but we have now seen how this can be
solved. First, if we canfind exogenous variation, we sometimes can infer
causality from correlations. Second, we have also seen that correlation
does imply causality under normal conditions. However, the direction
of causality is not always clear.

Given that it is easy to misinterpret the direction of causality and
difficult to find exogenous variation, it is appropriate that econometri-
cians have some restraint if it comes to causality. However, we should
not forget that the ultimate goal of econometrics should be to establish
causal relations. Therefore, thinking about what your econometric
results tell us about causality is of crucial importance.
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learning goals for this chapter

After studying this chapter, you should be able to:

1. explain the theoretical problem of causality, the practical problem
of causality in economics, and the relationship between the two.

2. explain howMill’s method of difference can address the problem
of causality, and the relation this method has to experimentation in
science.

3. explain the relationship between correlations and causality, and in
particular, the Reichenbach principle.

4. Explain the concept of natural experiments, the concept of exoge-
nous variation, and the way the instrumental variables approach
addresses the practical problem of causality in economics.
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